1)) 1 ящик; считаем все шары; всего исходов
n=2+10=12;
Благоприятных исходов вытащить белый шар (2белых, значит или 1 или второй);
m=2;
Вероятность по формуле
P= m/n=2/12=1/6
2 ящик, все шары считаем
Всех исходов
n=8+4=12;
Благоприятных исходов вытащить белый, их 8, любой 1 из 8.
m=8
Вероятность
P=m/n=8/12=2/3
Теперь нашли раздельно вероятность 1 ящик 1/6 и 2 ящик 2/3; события не зависимые, значит вероятности перемножаем и будет общая
Р общее = 1/6• 2/3= 2/18= 1/9=~~0,1
ответ: вероятность 0,1 что оба шара белые.
2)) Всех шаров, исходов
n=10+15+20+25= 70
Белых, вытащить 1, можно любой из 10;
благоприятных исходов m=10;
P=m/n = 10/70=1/7=~~ 0,14
ответ: вероятность 0,14 вытащить белый шар.
Подробнее - на -
Пошаговое объяснение:
1)) 1 ящик; считаем все шары; всего исходов
n=2+10=12;
Благоприятных исходов вытащить белый шар (2белых, значит или 1 или второй);
m=2;
Вероятность по формуле
P= m/n=2/12=1/6
2 ящик, все шары считаем
Всех исходов
n=8+4=12;
Благоприятных исходов вытащить белый, их 8, любой 1 из 8.
m=8
Вероятность
P=m/n=8/12=2/3
Теперь нашли раздельно вероятность 1 ящик 1/6 и 2 ящик 2/3; события не зависимые, значит вероятности перемножаем и будет общая
Р общее = 1/6• 2/3= 2/18= 1/9=~~0,1
ответ: вероятность 0,1 что оба шара белые.
2)) Всех шаров, исходов
n=10+15+20+25= 70
Белых, вытащить 1, можно любой из 10;
благоприятных исходов m=10;
P=m/n = 10/70=1/7=~~ 0,14
ответ: вероятность 0,14 вытащить белый шар.
Подробнее - на -
Пошаговое объяснение:
Общее количество исходов - 10*10=100
Для определения благоприятных (т.е. сумма меньше 15) исходов распишем количество возможных комбинаций выбора второго числа при выбранном первом:
Если первое число 1, 2, 3, 4 то можно выбирать любое второе число, т.е. количество возможных чисел по 10.
Если первое число 5 то вторых чисел 9 (т.е все кроме 10)
Если второе число:
6 то 8
7 то 7
8 - 6
9 - 5
10-4
Суммируем количество благоприятных исходов:
10+10 +10+10 +9+8+7+6+5+4 =79.
Поэтому вероятность 79/100 =0,79