Черная металлургия в первую очередь служит базой для развития машиностроения и металлообработки. Продукция черной металлургии находит применение практически во всех сферах современной экономики. Эта отрасль тяжелой промышленности охватывает такие стадии технологического процесса, как добыча, обогащение и агломерация руд черных металлов, производство огнеупоров, добыча нерудного сырья для черной металлургии, коксование угля, производство чугуна, стали, проката, ферросплавов, вторичный передел черных металлов, добыча вс материалов, изготовление металлических изделий производственного назначения и др
Функция y=x^2*(x-3): Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2*(x-3). Результат: y=0. Точка: (0, 0)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^2*(x-3) = 0. Решаем это уравнение и его корни будут точками пересечения с X: x=0. Точка: (0, 0)x=3. Точка: (3, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=x^2 + 2*x*(x - 3)=0. Решаем это уравнение и его корни будут экстремумами:x=0. Точка: (0, 0)x=2. Точка: (2, -4)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:2Максимумы функции в точках:0Возрастает на промежутках: (-oo, 0] U [2, oo)Убывает на промежутках: [0, 2]Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=6*x - 6=0. Решаем это уравнение и его корни будут точками, где у графика перегибы:x=1. Точка: (1, -2)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [1, oo)Выпуклая на промежутках: (-oo, 1
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2*(x-3).
Результат: y=0. Точка: (0, 0)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^2*(x-3) = 0. Решаем это уравнение и его корни будут точками пересечения с X:
x=0. Точка: (0, 0)x=3. Точка: (3, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=x^2 + 2*x*(x - 3)=0.
Решаем это уравнение и его корни будут экстремумами:x=0. Точка: (0, 0)x=2. Точка: (2, -4)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:2Максимумы функции в точках:0Возрастает на промежутках: (-oo, 0] U [2, oo)Убывает на промежутках: [0, 2]Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=6*x - 6=0.
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=1. Точка: (1, -2)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [1, oo)Выпуклая на промежутках: (-oo, 1