a) sin(5пи/14)*cos(пи/7)+cos(5пи/14)*sin(пи/7) = sin(5пи/14 + пи/7)= sin(пи/2) = 1
б) cos 78 градусов cos 18 градусов + sin 78 грудусов sin 18 градусов = cos(78 градусов - 18 градусов) = cos(60 градусов) = 1/2.
2)
У выражения
а) sin альфа cos бета - sin (альфа - бета)
sin (альфа - бета) = sin (альфа) * cos (бета) - cos (альфа) * sin (бета) , тогда получим :
sin альфа cos бета - sin (альфа - бета) = sin альфа * cos бета - sin (альфа) * cos (бета) - cos (альфа) * sin (бета) = - cos (альфа) * sin (бета) , поэтому :
sin альфа cos бета - sin (альфа - бета) = - cos (альфа) * sin (бета) .
б) cos ( пи\3 + x) + (корень из 3)\2 sin x - исходное выражение, преобразуем его :
cos ( пи\3 + x) = cos ( пи\3) *cos (х) - sin( пи\3) * sin(x) = cos (х) /2 - (корень из 3)\2 *sin(x) , тогда получим :
cos ( пи\3 + x) + (корень из 3)\2 sin x = cos (х) /2 - (корень из 3)\2 *sin(x) + (корень из 3)\2 sin x = cos (х) /2.
3) Докажите тождество :
cos (альфа+бета) - cos (альфа- бета) = - 2 sin альфа sin бета - исходное выражение, которое преобразуем ,
используя формулы сложения тригонометричесикх функций:
cos (альфа+бета) = cos (альфа) *cos (бета) - sin альфа sin бета,
cos (альфа-бета) = cos (альфа) *cos (бета) + sin альфа sin бета, суммируя выражения получим :
cos (альфа+бета) - cos (альфа- бета) = cos (альфа) *cos (бета) - sin альфа sin бета - cos (альфа) *cos (бета) - sin альфа sin бета =
= - 2 sin альфа sin бета.
что требовалось доказать .
4) решите уравнение
cos 4x cos x + sin 4 x sinx=0
Используя те же формулы, получим :
cos 4x cos x + sin 4 x sinx = cos (4x - x)= cos 3x, тогда
Обозначим искомые числа за x и y. Тогда: x + y = 22.
Если сумма двух чисел - это четное число, то оба числа были одной и той же четности (то есть либо оба нечетные, либо оба четные).
Но и разность чисел одной четности - это тоже четное число. Поэтому x - y - это обязательно четное число. Но среди чисел меньше 14 и больше 10 только одно четное число, это 12 (считаем, что разность не может быть равна 10 и 14).
Тогда мы можем составить и решить эту систему уравнений:
Сложим эти уравнения:
Получается, Сережа загдал числа 5 и 17.
Примечание.
Если же все-таки сумма может быть равна 10 и 14, то роме этой пары еще подойдут пары (19, 5) и (17 и 7).
преобразуем :
a) sin(5пи/14)*cos(пи/7)+cos(5пи/14)*sin(пи/7) = sin(5пи/14 + пи/7)= sin(пи/2) = 1
б) cos 78 градусов cos 18 градусов + sin 78 грудусов sin 18 градусов = cos(78 градусов - 18 градусов) = cos(60 градусов) = 1/2.
2)
У выражения
а) sin альфа cos бета - sin (альфа - бета)
sin (альфа - бета) = sin (альфа) * cos (бета) - cos (альфа) * sin (бета) , тогда получим :
sin альфа cos бета - sin (альфа - бета) = sin альфа * cos бета - sin (альфа) * cos (бета) - cos (альфа) * sin (бета) = - cos (альфа) * sin (бета) , поэтому :
sin альфа cos бета - sin (альфа - бета) = - cos (альфа) * sin (бета) .
б) cos ( пи\3 + x) + (корень из 3)\2 sin x - исходное выражение, преобразуем его :
cos ( пи\3 + x) = cos ( пи\3) *cos (х) - sin( пи\3) * sin(x) = cos (х) /2 - (корень из 3)\2 *sin(x) , тогда получим :
cos ( пи\3 + x) + (корень из 3)\2 sin x = cos (х) /2 - (корень из 3)\2 *sin(x) + (корень из 3)\2 sin x = cos (х) /2.
3) Докажите тождество :
cos (альфа+бета) - cos (альфа- бета) = - 2 sin альфа sin бета - исходное выражение, которое преобразуем ,
используя формулы сложения тригонометричесикх функций:
cos (альфа+бета) = cos (альфа) *cos (бета) - sin альфа sin бета,
cos (альфа-бета) = cos (альфа) *cos (бета) + sin альфа sin бета, суммируя выражения получим :
cos (альфа+бета) - cos (альфа- бета) = cos (альфа) *cos (бета) - sin альфа sin бета - cos (альфа) *cos (бета) - sin альфа sin бета =
= - 2 sin альфа sin бета.
что требовалось доказать .
4) решите уравнение
cos 4x cos x + sin 4 x sinx=0
Используя те же формулы, получим :
cos 4x cos x + sin 4 x sinx = cos (4x - x)= cos 3x, тогда
cos 3x = 0, при
3x = (( 2*n +1 )/2) * пи, отсюда :
x = (( 2*n +1 )/6) * пи
Пошаговое объяснение:
ответ: 5 и 17.
Обозначим искомые числа за x и y. Тогда: x + y = 22.
Если сумма двух чисел - это четное число, то оба числа были одной и той же четности (то есть либо оба нечетные, либо оба четные).
Но и разность чисел одной четности - это тоже четное число. Поэтому x - y - это обязательно четное число. Но среди чисел меньше 14 и больше 10 только одно четное число, это 12 (считаем, что разность не может быть равна 10 и 14).
Тогда мы можем составить и решить эту систему уравнений:
Сложим эти уравнения:
Получается, Сережа загдал числа 5 и 17.
Примечание.
Если же все-таки сумма может быть равна 10 и 14, то роме этой пары еще подойдут пары (19, 5) и (17 и 7).