Том и Джерри идут навстречу друг другу
с одинаковыми скоростями вдоль прямой дороги.
Изначально между ними было 300 м. Когда
расстояние между ними составило 100 м, Том
услышал запах мыши и побежал к Джерри, увеличив
свою скорость в 3 раза. Джерри увидел кота только за 60 м, и сразу побежал
от него к своей норе, которая находится в начале его пути. Бежал Джерри в 2
раза быстрее, чем шёл до этого. Сможет ли Том догнать Джерри? Если да, то
сколько метров Джерри не добежит до своей норы? Если нет, напишите
сколько метров Тому останется бежать до норы.
1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
Случай n = 16 разбирается непосредственно.
Пошаговое объяснение:
Не забудь подписку и сердичку
Обозначим объём задания за 1(единицу), тогда каждый наборщик из 18 человек выполняет 1/18 часть работы за 6 часов
При сокращении наборщиков в 1,5 раза , то есть 18/1,5=12(наборщиков)
тогда объём работы каждый из 12 человек выполнит 1/12 части работы за х часов.
На основании этих данных составим пропорцию:
1/18 - 6
1/12 - х
х=1/12*6 :1/18=9 (часов) За это время наборщики из 12 человек подготовят журнал, а это на 9-6=3 (часа) больше
ответ: 12 наборщикам понадобится дополнительное время 3 часа