Турист проделал путь на автомобиле, на мотоцикле, и пешком. скорости его движения пропорциональны 9, 5, 1. известно что на автомобиле он ехал на полчаса больше, чем на мотоцикле, но на полчаса меньше, чем шел пешком. обратный путь он проделал на мотоцикле. в каком случае и на сколько больше израсходовано времени?
осями координат называют две перпендикулярные координатные прямые, которые 2) точку пересечения осей координат называют 3) горизонтальную ось координат называют осью 4) вертикальную ось координат называют осью 5) вместе оси координат образуют 6) координатной плоскостью называют 7) записывая координаты точки, ординату всегда ставят на 8) у начала координат абсцисса и ордината равны 9) если точка лежит на оси абсцисс, то равна нулю её 10) если точка лежит на оси ординат, то равна нулю её 11) две точки с противоположными абсциссами и ординатами симме- тричны относительно 12) две точки с равными ординатами и противоположными абсцисса- ми симметричны относительно 13) две точки с равными абсциссами и противоположными ордината- ми симметричны относительно !
ответ:1. Рассмотрим △OAR: ∠OAR = 90° (так как OA — высота), ∠AOR = 15° (по условию).
По теореме о сумме углов треугольника: сумма всех внутренних углов любого треугольника равна 180°. Тогда, для △OAR:
∠OAR + ∠ARO + ∠AOR = 180°;
90° + ∠ARO + 15° = 180°;
∠ARO = 180° - 90° - 15°;
∠ARO = 75°.
2. В прямоугольнике MRKH пары сторон MR и KN, MN и RK параллельны (по определению прямоугольника)
∠ARO = ∠ONK так как они являются накрест лежащими углами, образованными при пересечении параллельных прямых MR и KN секущей RN.
Таким образом, ∠ONK = 75°.
ответ Пошаговое объяснение:
1. Рассмотрим △OAR: ∠OAR = 90° (так как OA — высота), ∠AOR = 15° (по условию).
По теореме о сумме углов треугольника: сумма всех внутренних углов любого треугольника равна 180°. Тогда, для △OAR:
∠OAR + ∠ARO + ∠AOR = 180°;
90° + ∠ARO + 15° = 180°;
∠ARO = 180° - 90° - 15°;
∠ARO = 75°.
2. В прямоугольнике MRKH пары сторон MR и KN, MN и RK параллельны (по определению прямоугольника)
∠ARO = ∠ONK так как они являются накрест лежащими углами, образованными при пересечении параллельных прямых MR и KN секущей RN.
Таким образом, ∠ONK = 75°.
ответ