У прямокутний трикутник ABC вписано коло, ∠B — прямий. Обчисли кути трикутника A та C, а також кути, вершинами яких є центр кола, якщо один з них ∠ FOE = 112
Рассмотрим набор из некоторых 2014 различных степеней двойки. Каждая при делении на 2013 может давать один из 2013 остатков (0, 1, ... 2012).
Тогда, по Принципу Дирихле, в этом наборе есть хотя бы 2 числа, дающих одинаковые остатки при делении на 2013. Пусть первое равно (2013 * a + r), а второе равно (2013 * b + r), где a, b, r - целые неотрицательные числа, r < 2013.
Тогда их разность равна (2013 * a + r) - (2013 * b + r) = 2013 * (a - b) - т.е. в таком наборе обязательно найдутся две степени двойки, разность которых кратна 2013
1. Найдем производную от функции:
(х^3 + 3х^2)' = 3х^2 + 6х;
2. Приравняем производную функции к 0 и решим уравнение:
3х^2 + 6х = 0;
х * (3х + 6) = 0;
х1 = 0;
3х2 + 6 = 0;
3х2 = -6;
х2 = -2.
3. Определим значение функции:
у(0) = 0;
у(-2) = (-2)^3 + 3 * 2^2 = -8 + 3 * 4 = -8 + 12 = 4.
4. Найдем вторую производную:
(3х^2 + 6х)' = 6х + 6.
5. Вычислим значение:
у"(0) = 6 > 0, тогда точка х = 0, точка минимума функции.
у"(-2) = -12 + 6 = -6 < 0, тогда точка х = -2, точка максимума функции.
ответ: fmin = 0; fmax = 4.
Пошаговое объяснение:
Вот смотри
Рассмотрим набор из некоторых 2014 различных степеней двойки. Каждая при делении на 2013 может давать один из 2013 остатков (0, 1, ... 2012).
Тогда, по Принципу Дирихле, в этом наборе есть хотя бы 2 числа, дающих одинаковые остатки при делении на 2013. Пусть первое равно (2013 * a + r), а второе равно (2013 * b + r), где a, b, r - целые неотрицательные числа, r < 2013.
Тогда их разность равна (2013 * a + r) - (2013 * b + r) = 2013 * (a - b) - т.е. в таком наборе обязательно найдутся две степени двойки, разность которых кратна 2013
Ч.т.д.