Учёба в школе интеграл устроена так: 5 недель продолжаются занятия, затем одна неделя каникул , потом опять 5 недель занятий и одна неделя каникул и т. д. в воскресенье 15 октября был последний день каникул в школе интеграл. какого числа и в каком месяце начнутся следующие каникулы? в октябре 31 день, а в ноябре 30 дней.
3 ч 45 мин = 3 ч 45/60 мин = 3 3/4 часа
Пусть х - время, за которое папа поклеил бы обои, работая в одиночку.
Тогда х+4 - время, за которое мама поклеила бы обои, работая в одиночку.
1) 1х : 3 3/4 = 1 : 15/4 = 4/15 - производительность папы и мамы при совместной работе.
2) 1:х = 1/х - производительность одного пары.
3) 1 : (х+4) = 1/(х+4) - производительность одной мамы.
4) уравнение:
1/х + 1/(х+4) = 4/15
Умножим обе части уравнения на 15х(х+4):
15(х+4) + 15х = 4х(х+4)
15х + 60 + 15х = 4х^2 + 16х
4х^2 + 16х - 15х -15х -60 = 0
4х^2 - 14х - 60 = 0
Сократим уравнение на 2:
2х^2 -7х - 30 = 0
Дискриминант:
(-7)^2 + 4•2•30 = 49 +240 = 289
Корень из дискриминанта = корень их 289 = 17
х1 = (7+17)/(2•2) = 24/4=6 часов - время, за которое папа один поклеил бы обои.
х2 = (7-17)/(2•2) = -10/4 = -2,5 часов - не подходит.
ответ: 6 часов.
Проверка:
1) 6+4=10 часов - время, за которое мама поклеили бы обои одна.
2) 1:6=1/6 - производительность папы.
3) 1:10=1/10 - производительность мамы.
4) 1/6 + 1/10 = 5/30 + 3/30 = 8/30 = 4/15 - производительность мамы и папы при совместной работе.
5) 1 : 4/15 = 15/4 часа = 3 3/4 часа - 3 часа 45 мин - время за которое папа и мама поклеят обои, работая вместе.
чурбаков 15 ч;
бревен ? бр
Решение.
1 С П О С О Б.
9 + 1 = 10 (ч) получилось бы чурбаков, если было бы одно длинное бревно;
15 - 10 = 5 (ч) уже были отрезаны, т.е. наше длинное бревно было не целым, а разрезанным 5 раз (Бревно - это длинный чурбак!);
5 + 1 = 6 (бр.) всего бревен было.
ответ: 6 бревен всего было;
2 С П О С О Б.
При распиле бревна чурбаков получается на 1 ( крайний) больше.
15 - 9 = 6 (ч) разница между числом бревен и числом распилов, т.е. число крайних чурбаков.
6 : 1 = 6 (бр.) нужно распилить бревен.
ответ: 6 бревен было распилено.
Возможна такая схема: | --- распил; чурбак
1. || 2. ||
3. || 4. ||
5. || 6. |
Или такая:
1. ___|__|__|__|___ 2. |
3. | 4. |
5. | 6. |
Все равно для получения 15-ти чурбаков 9-ю распилами нужно 9 бревен.