Ученик должен выполнить практическую работу по математике. Ему предложили на выбор 8 тем по алгебре и 6 тем по геометрии. Сколькими он может выбрать одну тему для практической работы ? 7. Переплётчик должен переплести 10 различных книг в красный, белый, синий и коричневые переплёты. Сколькими он может это сделать ?
1. Область допустимых значений переменной:
√(x + 3) ≤ 1 - x;
x + 3 ≥ 0;
x ≥ -3;
x ∈ [-3; ∞). (1)
2. Квадратный корень всегда больше или равен нулю, следовательно, неравенство имеет решение при неотрицательных значениях правой части:
1 - x ≥ 0;
x ≤ 1;
x ∈ (-∞; 1]. (2)
3. Пересечение двух множеств:
[-3; ∞) ⋂ (-∞; 1] = [-3; 1].
Промежутку [-3; 1] принадлежат следующие целые числа: -3; -2; -1; 0; 1.
4. Проверим выполнение неравенства:
√(x + 3) ≤ 1 - x;
a) x = -3;
√(-3 + 3) ≤ 1 - (-3);
0 ≤ 4, верное неравенство;
b) x = -2;
√(-2 + 3) ≤ 1 - (-2);
1 ≤ 3, верное неравенство;
c) x = -1;
√(-1 + 3) ≤ 1 - (-1);
√2 ≤ 2, верное неравенство;
d) x = 0;
√(0 + 3) ≤ 1 - 0;
√3 ≤ 1, ложное неравенство;
e) x = 1;
√(1 + 3) ≤ 1 - 1;
2 ≤ 0, ложное неравенство.
а) отрицательное число умножаем на отрицательное получаем положительное (-8) ×(-2) =-16
б) минус на минус даёт плюс, поэтому числа в скобках становятся положительными, поэтому число положительное. (-(-8))×(-(-2)=16
в) отрицательное число плюс отрицательное число (все отрицательные числа в таком примере берём в скобки). При раскрытии скобок плюс превращается в минус. Когда мы отнимаем от одного отрицательного числа другое, мы прибавляем их значения и сохраняем знак минус. Чтобы было понятнее пример: (-2) +(-8) =-2-8=-(2+8) =-10
г) Тот же принцип, что и во втором. Минус на минус даёт плюс, поэтому числа в скобках становятся положительными. ответ положительный. (-(-8)) +(-(-2) =8+2=10
Надеюсь понятно, так как препод-технарь из меня ерундовый)