Укажи все трёхзначные числа, которые раскладываются на шесть одинаковых простых множителей. ответ (числа записывай в порядке возрастания, без промежутков, отделяя друг от друга символом ;):
Выпишем первые простые числа, которые будут являться множителями:
1, 3, 5.
Попробуем возвести в 6-ю степень (так как трёхзначные числа должны раскладываться на 6 простых множителей и будут равны их произведению) эти числа:
Число 1 не может являться простым множителем необходимого числа (так как 1 — не трёхзначное число), равно как и 5 (так как 15 625 — не трёхзначное число).
Остаётся лишь простой множитель 3 и трёхзначное число 729.
Доказать, что других чисел нет просто: 1 и 5 — ближайшие простые числа к числу 3, а поскольку они, возведённые в 6-ю степень, не подходят по условию, делаем вывод, что другие простые множители тоже не подойдут.
11; 13; 17; 19; 23; 29; 31.
729.
Пошаговое объяснение:
Выпишем первые простые числа, которые будут являться множителями:
1, 3, 5.
Попробуем возвести в 6-ю степень (так как трёхзначные числа должны раскладываться на 6 простых множителей и будут равны их произведению) эти числа:
Число 1 не может являться простым множителем необходимого числа (так как 1 — не трёхзначное число), равно как и 5 (так как 15 625 — не трёхзначное число).
Остаётся лишь простой множитель 3 и трёхзначное число 729.
Доказать, что других чисел нет просто: 1 и 5 — ближайшие простые числа к числу 3, а поскольку они, возведённые в 6-ю степень, не подходят по условию, делаем вывод, что другие простые множители тоже не подойдут.