arctgх и arcctgх определены для любого действительного числа.
Т.к. арктангенс в области определения строго возрастает, то меньшему значению аргумента соответствует меньшее значение х,
из всех значений аргумента 6/π≈1.91; π/5≈0.628; 0.6; 0.7; 1.6 самым меньшим значением аргумента является 0.6, значит, наименьшее значение будет 3)arctg 0,6
есди здесь опечатка и даны все арктангенсы.
Если же в 3) и 5) задании арккотангенсы, то из оставшихся арктангенсов самым маленьким является 2)arctg π/5
из арккотангенсов наоборот надо брать функцию с самым большим значением аргумента, т.к. она убывает в своей области определения.
5)arcctg 1,6 =π/2-arctg 1,6 .
похоже, что это и будет самым малым значением, т.к. для арктангенса это было самое большое. Более точно по таблицами
arctgх и arcctgх определены для любого действительного числа.
Т.к. арктангенс в области определения строго возрастает, то меньшему значению аргумента соответствует меньшее значение х,
из всех значений аргумента 6/π≈1.91; π/5≈0.628; 0.6; 0.7; 1.6 самым меньшим значением аргумента является 0.6, значит, наименьшее значение будет 3)arctg 0,6
есди здесь опечатка и даны все арктангенсы.
Если же в 3) и 5) задании арккотангенсы, то из оставшихся арктангенсов самым маленьким является 2)arctg π/5
из арккотангенсов наоборот надо брать функцию с самым большим значением аргумента, т.к. она убывает в своей области определения.
5)arcctg 1,6 =π/2-arctg 1,6 .
похоже, что это и будет самым малым значением, т.к. для арктангенса это было самое большое. Более точно по таблицами
1)arctg 6/π=62.6347650764
2)arctgπ/5=32.1288209622
3)arctg0.6=30.9637565321 ;arcctg 0,6≈59.0362434679
4)arctg0.7 =34.9920201986
5)arctg1.6=57.9946167919; arcctg1,6≈32.0053832081