1.Гоняют по кольцу. Длинна кольца 350 км. Старт и финиш в одной точке. Длинна этапа эстафеты - 75 км. Что ищем: наименьшее количество этапов. 2. А может 350 км разделится на 75 км, так что бы получилось число без остатка (что бы старт и финиш совпали) . Проверяем: 350:75=4,666... Нет не получилось. Тогда следующая точка совпадения будет - 2 круга, а это? 3. Два круга = 2 х 350км = 700 км. Может теперь разделится без остатка? Проверяем: 700:75=9,333... Нет, опять не получилось. Тогда следующая точка совпадения будет - 3 круга, а это? 4. Три круга = 3 х 350км = 1050 км. Снова ищем ровное число этапов. Проверяем: 1050:75=14. Свершилось! Ура!! ! ответ: наименьшее количество этапов 14(четырнадцать) , обоснованием ответа является решение-рассуждение.
2015 делится на 3 с остатком 2, поэтому группы будут неравные. 2015 = 5*13*31 = 13*155 Возьмем, например, 13 гномов. Пусть они обиделись по цепочке: 1 на 2, 2 на 3, 3 на 4, 4 на 5, 5 на 6, 6 на 7, 7 на 8, 8 на 9, 9 на 10, 10 на 11, 11 на 12, 12 на 13, 13 на 1. Разделим их на тройки: (1,2,3), (4,5,6), (7,8,9), (10,11,12) и 13. Теперь составим 1 группу из первых гномов: (1,4,7,10), вторую из вторых: (2,5,8,11) и третью из третьих: (3,6,9,12) 13-го гнома определим во 2 группу, т.к. у него обиды с 1 и 12. Таким образом, 13 гномов мы распределили. Теперь тоже самое делаем в каждой из 155 групп по 13 гномов. Всё!
1.Гоняют по кольцу. Длинна кольца 350 км. Старт и финиш в одной точке. Длинна этапа эстафеты - 75 км. Что ищем: наименьшее количество этапов. 2. А может 350 км разделится на 75 км, так что бы получилось число без остатка (что бы старт и финиш совпали) . Проверяем: 350:75=4,666... Нет не получилось. Тогда следующая точка совпадения будет - 2 круга, а это? 3. Два круга = 2 х 350км = 700 км. Может теперь разделится без остатка? Проверяем: 700:75=9,333... Нет, опять не получилось. Тогда следующая точка совпадения будет - 3 круга, а это? 4. Три круга = 3 х 350км = 1050 км. Снова ищем ровное число этапов. Проверяем: 1050:75=14. Свершилось! Ура!! ! ответ: наименьшее количество этапов 14(четырнадцать) , обоснованием ответа является решение-рассуждение.
2015 = 5*13*31 = 13*155
Возьмем, например, 13 гномов. Пусть они обиделись по цепочке:
1 на 2, 2 на 3, 3 на 4, 4 на 5, 5 на 6, 6 на 7, 7 на 8, 8 на 9, 9 на 10,
10 на 11, 11 на 12, 12 на 13, 13 на 1.
Разделим их на тройки: (1,2,3), (4,5,6), (7,8,9), (10,11,12) и 13.
Теперь составим 1 группу из первых гномов: (1,4,7,10),
вторую из вторых: (2,5,8,11) и третью из третьих: (3,6,9,12)
13-го гнома определим во 2 группу, т.к. у него обиды с 1 и 12.
Таким образом, 13 гномов мы распределили.
Теперь тоже самое делаем в каждой из 155 групп по 13 гномов.
Всё!