Відстань між двома станціями автобус долає за 1,5 год. якщо швидкість руха автобуса збільшити на 6 км/год, то цю саму відстань він подолає за1,2 години. знайдіть початкову швидкість автобуса
Дан треугольник ABC, на стороне AC которого взята точка D такая, что AD=2 см, а DC=9 см. Отрезок DB делит треугольник ABC на два треугольника. При этом площадь треугольника ABC составляет 77 см². Найди площадь большего из образовавшихся треугольников, ответ дай в квадратных сантиметрах.
Решение
1) Из вершины В проведём высоту h к стороне АС, тогда:
63 cм²
Пошаговое объяснение:
Задание
Дан треугольник ABC, на стороне AC которого взята точка D такая, что AD=2 см, а DC=9 см. Отрезок DB делит треугольник ABC на два треугольника. При этом площадь треугольника ABC составляет 77 см². Найди площадь большего из образовавшихся треугольников, ответ дай в квадратных сантиметрах.
Решение
1) Из вершины В проведём высоту h к стороне АС, тогда:
S ABD + S BDC = 2 · h/2 + 9 · h/2 =77,
откуда h = 154 : 11 = 14 см
2) S BDC = 9 · h/2 = 9 · 14/2 = 63 cм²
ответ: 63 cм²
Р = 12√3 + 24
Пошаговое объяснение:
Диагонали в точке пересечения делятся пополам =>
АС = АО +ОС = 12+ 12 = 24
BD = AC = 24
треугольник АОD равнобедренный, т. к АО =OD - по условию => угол DAO = углу ADO = 30°
Р прямоугольника = (DC + AD) * 2
найдём DC
в треугольнике ADC - п/у
DC = 1/2 AC - по св п/у треуг
DC = 1/2 24 = 12
найдём AD
проведём высоту OM и получим п/у треугольник
т. к. угол АОМ = 60° - т. к. высота в р/б треугольнике является биссектрисой => угол МАО = 30°
=> ОМ = 1/2 АО - по свойству п/у треугольника
ОМ = 1/2 12 = 6
ПО ТЕОРЕМЕ ПИФАГОРА НАЙДЁМ AD
AD² + OM² = AO²
AD² + 6² = 12²
AD² + 36 = 144
AD² = 144 - 36
AD² = 108
AD = √108 = 6√3
Р прямоугольника =( 6√3 + 12)* 2 = 12√3 + 24