Пусть х – рублей стоит одна ракетка, а у рублей – один мяч. После скидок стоимость ракетки снизили на 25% , т.е. стоимость ракетки составила 75 % (100%-25%) от х или 0,75х, а стоимость мяча снизилась – 0,90у.
Составим систему уравнений : 8х+10у=4560 8*0,75х+10*0,90у=3780
8х+10у=4560 6x+9y=3780
Решить систему уравнений методом сложения (возьмите систему в скобки {): _8х+10у=4560 [*9 6x+9y=3780 [*10
9(8х+10у)-10(6x+9y)=9*4560-10*3780 72x+90y-60x-90y=41040-37800 12x=3240 х=270 (рублей) – стоит одна ракетки. 8*270+10у=4560 2160+10у=4560 10у=2400 у=240 (рублей) – стоит один мяч ответ: стоимость одно ракетки - 270 рублей, стоимость одного мяча=240 рублей.
1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
Составим систему уравнений :
8х+10у=4560
8*0,75х+10*0,90у=3780
8х+10у=4560
6x+9y=3780
Решить систему уравнений методом сложения (возьмите систему в скобки {):
_8х+10у=4560 [*9
6x+9y=3780 [*10
9(8х+10у)-10(6x+9y)=9*4560-10*3780
72x+90y-60x-90y=41040-37800
12x=3240
х=270 (рублей) – стоит одна ракетки.
8*270+10у=4560
2160+10у=4560
10у=2400
у=240 (рублей) – стоит один мяч
ответ: стоимость одно ракетки - 270 рублей, стоимость одного мяча=240 рублей.
1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
Случай n = 16 разбирается непосредственно.
Пошаговое объяснение:
Не забудь подписку и сердичку