Введемо поняття первісної функції та невизначеного інтеграла, розглянемо основні іх властивості.
Функція F(x) називається первісною функції f(x) на даному проміжку, якщо для будь-якого x з цього проміжку F‘(x) = f(x).
Наприклад
Перевірити, чи буде функція F(x)=sinx+2,5x2 первісною функції f(x)= cosx+5х на множині дійсних чисел?
Знайдемо похідну функції F(x), F‘(x) = cosx+2,5*2х, отже F(x) називається первісною функції f(x) на множині дійсних чисел
Основна властивість первісної
Якщо функція F(x) є первісною для функції f(x) на даному проміжку, а C – довільна стала, то F(x)+C є також первісною для функції f(x), при цьому будь-яка первісна для функції f(x) на даному проміжку може бути записана у вигляді F(x)+C , де С – довільна стала.
Первісна
Графіки будь-яких первісних одержуються один з одного паралельним перенесенням уздовж осі ОУ.
Наприклад, розв’яжемо задачу:
Для функції f(x)=–x2+3x обчисліть первісну, графік якої проходить через точку М(2;-1).
Розв’язання
Знайдемо загальний вигляд первісної даної функції:
F(x)=-x3/3+3 x2/2 +С. (1)
Оскільки графік шуканої первісної задовольняє рівнянню (1), підставимо в рівняння замість аргументу значення 2, замість функції значення -1, матимемо:
Очень часто мы задаем вопрос: "Что же такое любовь?", но ответить на него не можем. Может быть потому, что мы еще никогда не любили, а может потому, что ее на самом деле нет?
Но все же любовь есть. Она живет в сердце каждого человека. Ведь любовь бывает разной: любовь к близкому человеку, родителям, любовь к какому-то неодушевленному предмету, любовь к Родине, любовь к противоположному полу... Все мы кого-то или что-то любим, так было и так будет всегда.
Да, бывает, что мы только думаем, что любим, а на самом деле, это не любовь. Ведь помимо любви существует еще и влюбленность, и тяга, и, в конце концов, страсть. А это уже совершенно разные вещи.
Как же не запутаться, как же понять, действительно ли мы любим? Действительно ли это любовь, а не что-то другое, что может привести совсем к иному, не к тому, о чем мы мечтаем и думаем? Оказывается, все просто. Я расскажу о любви к человеку.
Любовь - это своего рода самоотдача. Это когда ты все отдаешь, вкладывая в это душу, когда ничего не просишь взамен, лишь бы тот человек был счастлив.
Введемо поняття первісної функції та невизначеного інтеграла, розглянемо основні іх властивості.
Функція F(x) називається первісною функції f(x) на даному проміжку, якщо для будь-якого x з цього проміжку F‘(x) = f(x).
Наприклад
Перевірити, чи буде функція F(x)=sinx+2,5x2 первісною функції f(x)= cosx+5х на множині дійсних чисел?
Знайдемо похідну функції F(x), F‘(x) = cosx+2,5*2х, отже F(x) називається первісною функції f(x) на множині дійсних чисел
Основна властивість первісної
Якщо функція F(x) є первісною для функції f(x) на даному проміжку, а C – довільна стала, то F(x)+C є також первісною для функції f(x), при цьому будь-яка первісна для функції f(x) на даному проміжку може бути записана у вигляді F(x)+C , де С – довільна стала.
Первісна
Графіки будь-яких первісних одержуються один з одного паралельним перенесенням уздовж осі ОУ.
Наприклад, розв’яжемо задачу:
Для функції f(x)=–x2+3x обчисліть первісну, графік якої проходить через точку М(2;-1).
Розв’язання
Знайдемо загальний вигляд первісної даної функції:
F(x)=-x3/3+3 x2/2 +С. (1)
Оскільки графік шуканої первісної задовольняє рівнянню (1), підставимо в рівняння замість аргументу значення 2, замість функції значення -1, матимемо:
-1=-8/3+6 +С,
Отже С=-13/3.
Шукана первісна матиме вигляд: F(x)=-x3/3+3 x2/2 -13/3
Невизначений інтеграл
Первісна. Інтеграл
Таблиця первісних (невизначених інтегралів)
Первісна. Таблиця інтегралів
Приклади знаходження невизначених інтегралів:
Первісна. Інтеграл
ІНТЕГРАЛПЕРВІСНАПОЧАТКИ АНАЛІЗУФУНКЦІЯ
Навігація по записам
ПОПЕРЕДНІЙ ЗАПИС
Похідна функції, її геометричний та механічний зміст
НАСТУПНИЙ ЗАПИС
Геометричний зміст і означення визначеного інтеграла
ЗАЛИШИТИ ВІДПОВІДЬ
Ваша e-mail адреса не оприлюднюватиметься. Обов’язкові поля позначені *
Коментар
Ім'я *
Email *
Сайт
Цей сайт використовує Akismet для зменшення спаму. Дізнайтеся, як обробляються ваші дані коментарів.
ТЕСТИ ЗНО ОНЛАЙН
На сайті osvita.ua можна пройти тестування ЗНО за текстами попередніх років онлайн
Тематичні тренувальні тести для підготовки до ЗНО з математики
ОСТАННІ ПУБЛІКАЦІЇ
Первісна та інтеграл
09.05.2020
Логарифмічні рівняння та нерівності
09.05.2020
Показникові рівняння та нерівності
07.05.2020
Куля і сфера
16.04.2020
Дослідження функції за до похідної у завданнях з параметрами
Пошаговое объяснение:
Очень часто мы задаем вопрос: "Что же такое любовь?", но ответить на него не можем. Может быть потому, что мы еще никогда не любили, а может потому, что ее на самом деле нет?
Но все же любовь есть. Она живет в сердце каждого человека. Ведь любовь бывает разной: любовь к близкому человеку, родителям, любовь к какому-то неодушевленному предмету, любовь к Родине, любовь к противоположному полу... Все мы кого-то или что-то любим, так было и так будет всегда.
Да, бывает, что мы только думаем, что любим, а на самом деле, это не любовь. Ведь помимо любви существует еще и влюбленность, и тяга, и, в конце концов, страсть. А это уже совершенно разные вещи.
Как же не запутаться, как же понять, действительно ли мы любим? Действительно ли это любовь, а не что-то другое, что может привести совсем к иному, не к тому, о чем мы мечтаем и думаем? Оказывается, все просто. Я расскажу о любви к человеку.
Любовь - это своего рода самоотдача. Это когда ты все отдаешь, вкладывая в это душу, когда ничего не просишь взамен, лишь бы тот человек был счастлив.