В пекарне было 207 пирогов а тортов в 9 раз меньше чем пирогов за день продали одну пятую всей выпечки, а остальную отправили в четыре магазина поровну. Сколько тортов и пирогов получил каждый магазин? Скажите ответ
Число {\displaystyle \pi }\pi иррационально, то есть его значение не может быть точно выражено в виде дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m}m — целое число, а {\displaystyle n}n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа {\displaystyle \pi }\pi была впервые доказана Иоганном Ламбертом в 1761 году[2] путём разложения тангенса в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел {\displaystyle \pi }\pi и {\displaystyle \pi ^{2}}\pi ^{2}. Несколько доказательств подробно приведено в статье Доказательства иррациональности π.
{\displaystyle \pi }\pi — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Трансцендентность числа {\displaystyle \pi }\pi была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году[3]. Поскольку в евклидовой геометрии площадь круга и длина окружности являются функциями числа {\displaystyle \pi }\pi , то доказательство трансцендентности {\displaystyle \pi }\pi положило конец попыткам построить квадратуру круга, длившимся более 2,5 тысяч лет.
В 1934 году Гельфонд доказал[4] трансцендентность числа {\displaystyle e^{\pi }}e^{\pi }. В 1996 году Юрий Нестеренко доказал, что для любого натурального {\displaystyle n}n числа {\displaystyle \pi }\pi и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}} алгебраически независимы, откуда, в частности, следует[5][6] трансцендентность чисел {\displaystyle \pi +e^{\pi },\pi e^{\pi }}\pi +e^{\pi },\pi e^{\pi } и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}}.
{\displaystyle \pi }\pi является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли {\displaystyle 1/\pi }1/\pi к кольцу периодов.
Тут нужно искать инварианты. В первом автомате (а + 1) - (в + 1) = а - в - разность постоянна. Во втором автомате (а/2 - в/2) = (а - в)/2 - разность делится пополам. В третьем автомате разности складываются: а - с = (а - в) + (в - с).
У нас есть карточка (5, 27). В первом автомате (5, 27) > (6, 28). Во втором автомате (6, 28) > (3, 14), В первом автомате (3, 14) > (28, 39), В третьем автомате (6, 28),(28, 39) > (6, 39).
Мы имеем набор карточек (5, 27), (6, 28), (3, 14), (28, 39), (6, 39). Посчитаем разность чисел на каждой из них, получим ряд 22; 22; 11; 11; 33. Очевидно, что общим является делимость на 11.
Разность числе на требуемой карточке равна 2016 - 1 = 2015. но она на 11 не делится. Значит, такую карточку получить нельзя.
Число {\displaystyle \pi }\pi иррационально, то есть его значение не может быть точно выражено в виде дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m}m — целое число, а {\displaystyle n}n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа {\displaystyle \pi }\pi была впервые доказана Иоганном Ламбертом в 1761 году[2] путём разложения тангенса в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел {\displaystyle \pi }\pi и {\displaystyle \pi ^{2}}\pi ^{2}. Несколько доказательств подробно приведено в статье Доказательства иррациональности π.
{\displaystyle \pi }\pi — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Трансцендентность числа {\displaystyle \pi }\pi была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году[3]. Поскольку в евклидовой геометрии площадь круга и длина окружности являются функциями числа {\displaystyle \pi }\pi , то доказательство трансцендентности {\displaystyle \pi }\pi положило конец попыткам построить квадратуру круга, длившимся более 2,5 тысяч лет.
В 1934 году Гельфонд доказал[4] трансцендентность числа {\displaystyle e^{\pi }}e^{\pi }. В 1996 году Юрий Нестеренко доказал, что для любого натурального {\displaystyle n}n числа {\displaystyle \pi }\pi и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}} алгебраически независимы, откуда, в частности, следует[5][6] трансцендентность чисел {\displaystyle \pi +e^{\pi },\pi e^{\pi }}\pi +e^{\pi },\pi e^{\pi } и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}}.
{\displaystyle \pi }\pi является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли {\displaystyle 1/\pi }1/\pi к кольцу периодов.
В первом автомате (а + 1) - (в + 1) = а - в - разность постоянна.
Во втором автомате (а/2 - в/2) = (а - в)/2 - разность делится пополам.
В третьем автомате разности складываются: а - с = (а - в) + (в - с).
У нас есть карточка (5, 27).
В первом автомате (5, 27) > (6, 28).
Во втором автомате (6, 28) > (3, 14),
В первом автомате (3, 14) > (28, 39),
В третьем автомате (6, 28),(28, 39) > (6, 39).
Мы имеем набор карточек (5, 27), (6, 28), (3, 14), (28, 39), (6, 39).
Посчитаем разность чисел на каждой из них, получим ряд 22; 22; 11; 11; 33. Очевидно, что общим является делимость на 11.
Разность числе на требуемой карточке равна 2016 - 1 = 2015. но она на 11 не делится. Значит, такую карточку получить нельзя.
ответ, Нельзя.