В таблиці 5 на 5 в нижньому лівому кутку стоїть король який може ходити на одну клітинку вверх праворуч або ліворуч вверх по діагоналі. Скількома різними від добереться до правого верхнього кутка не проходячи через центральну клітинку?
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Пошаговое объяснение:
Вот там написал