В техникуме был создана бригада сварщиков, состоящая из 5 мастеров и 7 учащихся. За 5 дней бригада изготовила 850 сварных конструкций. Ко Дню профтехобразования бригада решила посоревноваться: мастера повысили производительность труда на 20%, а учащиеся на 10%, и, поэтому, за следующие 5 дней бригада изготовила 985 сварных конструкций. Найти дневную производительность труда до начала соревнования и в ходе соревнования.
20 - дневная производительность труда мастера до начала соревнования;
24 - дневная производительность труда мастера в ходе соревнования;
10 - дневная производительность ученика до начала соревнования;
11 - дневная производительность ученика в ходе соревнования.
Пошаговое объяснение:
Пусть первоначальная дневная производительность труда мастера равна х, а первоначальная дневная производительность одного ученика равна у.
Тогда можно составить следующую систему уравнений:
(5х + 7у) · 5 = 850 (1)
(5х · 1,2 + 7у · 1,1) · 5 = 985 (2)
или
5х + 7у = 170 (3)
6х + 7,7 у = 197 (4)
Умножим уравнение (3) на 1,1:
5,5 х + 7,7 у = 187 (5)
и из уравнение (4) вычтем уравнение (5):
6х - 5,5х + 7,7у - 7,7у = 197 - 187
0,5х = 10
х = 20 - дневная производительность труда мастера до начала соревнования;
20 · 1,2 = 24 - дневная производительность труда мастера в ходе соревнования.
Подставим х = 20 в уравнение (3):
5 · 20 + 7у = 170
7у = 170 - 100 = 70
у = 70/7 = 10 - дневная производительность ученика до начала соревнования;
10· 1,1 = 11 - дневная производительность ученика в ходе соревнования.
ПРОВЕРКА
(5 · 20 + 7 · 10) · 5 = 850
(5 · 24 + 7 · 11) · 5 = 985
20 - дневная производительность труда мастера до начала соревнования;
24 - дневная производительность труда мастера в ходе соревнования;
10 - дневная производительность ученика до начала соревнования;
11 - дневная производительность ученика в ходе соревнования.