В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
6e3yMHbIu1
6e3yMHbIu1
11.07.2022 22:52 •  Математика

В треугольнике `ABC` его медианы `A A_1`, `B B_1` и `C C_1` пересекаются в точке `O`. Середины отрезков `OA`, `OB` и `OC` обозначены соответственно `A_2`, `B_2` и `C_2`. Выразите периметр шестиугольника `A_2C_1B_2A_1C_2B_1`  через медианы ДАЙТЕ ПОЛНОЕ РЕШЕНИЕ

Показать ответ
Ответ:
daryalife1998
daryalife1998
15.10.2020 15:45

Медианы в точке пересечения делятся в отношении 2:1, считая от вершины.

AO=\frac{2}{3} m_{a}

BO=\frac{2}{3} m_{b}

CO=\frac{2}{3} m_{c}

A_{2}C_{1}   и   A_{1}C_{2} -  средние линии треугольников  АОВ и ВОС

A_{2}C_{1}|| A_{1}C_{2}||BO

A_{2}C_{1}   =   A_{1}C_{2}   =  \frac{1}{2} BO=\frac{1}{2}\cdot \frac{2}{3} m_{b}=\frac{1}{3} m_{b}

B_{1}A_{2}   и   B_{2}A_{1} -  средние линии треугольников  АОС и ВОС

B_{1}A_{2}|| B_{2}A_{1}||CO

A_{2}C_{1}   =   A_{1}C_{2}   =  \frac{1}{2} CO=\frac{1}{2}\cdot \frac{2}{3} m_{c}=\frac{1}{3} m_{c}

C_{1}B_{2}   и   C_{2}B_{1}  -  средние линии треугольников  АОВ и АОС

C_{1}B_{2}|| C_{2}B_{1}|| AO

A_{2}C_{1}   =   A_{1}C_{2}   =  \frac{1}{2} AO=\frac{1}{2}\cdot \frac{2}{3} m_{b}=\frac{1}{3} m_{a}

P=2\cdot (\frac{1}{3} m_{a}+\frac{1}{3} m_{b}+\frac{1}{3} m_{c})


В треугольнике `ABC` его медианы `A A_1`, `B B_1` и `C C_1` пересекаются в точке `O`. Середины отрез
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота