В ящике 9 шаров белого и черного цветов. Эксперимент состоит в том, что из ящика наудачу извлекают шары с возвращением до тех пор, пока впервые не появится белый шар. Провели 6 независимых экспериментов, в результате которых пришлось извлечь 5, 4, 3, 5, 3, 2 шара соответственно. Методом максимального правдоподобия оценить количество белых шаров в ящике
1) Найдем сколько раз могут встречаться в часах цифры 2 и 5.
02 ч 05 ч 12 ч 15 ч 20 ч 21 ч 22 ч 23 ч
Итого 8 вариантов
При этом смена цифр в минутах на табло для каждого варианта будет равно 60 (60 минут в часе).
Значит количество вариантов для часов с цифрами 2 и 5 будет
8*60=480 вариантов
2) А если в разрядах часов нет ни 2 ни 5, то будут годиться только показания минут с 2 или 5. При этом у нас уже учтены варианты с цифрами 2 и 5 в часах.
Значит без этих вариантов для часов у нас остается:
24-8=16 часов без цифр 2 и 5.
Количество минут в сутках с цифрами 2 и 5.
Для начала найдем сколько раз встречаются цифры 2 и 5 в 1 часе.
Минуты за 1 час :
02 мин 05 мин 12 мин 15 мин 20 мин 21 мин 22 мин 23 мин 24 мин 25 мин 26 мин 27 мин 28 мин 29 мин 32 мин 35 мин 42 мин 45 мин
50 мин 51 мин 52 мин 53 мин 54 мин 55 мин 56 мин 57 мин 58 мин 59 мин
Итого 28 вариантов за 1 час
16*28=448 вариантов
480+448=928 комбинаций для электронных часов, где встречаются цифры 2 и 5.
ответ 928 вариантов
S полн.= S осн + S бок
S осн = √(р·(р-а)(p-b)(p-c)) ,где р - полупериметр:
р= (a+ b+ c)/2 = (10+10+12)/2 = 16, тогда
S осн = √(р·(р-а)(p-b)(p-c))= √(16·6·6·4) =4·6·2= 48 ( см²).
2) Если боковые грани наклонены к плоскости основания под одним углом,
то площадь боковой поверхности равна половине произведения периметра
основания на высоту боковой грани: S бок = P осн·SH = 32·SH =...
Если боковые грани наклонены к плоскости основания под одним углом, то
в основание пирамиды можно вписать окружность, причём вершина пирамиды
проецируется в её центр, т.е. НО = r = Sосн/ p=48/16= 3 (см)
Из ΔSOH - прям.: L SHO = 45⁰, тогда L SHO = 45⁰, значит ΔSHO - равнобедрен.
и SO=ОН=3 см, SH = 3√2 см .
S бок = P осн·SH = 32·SH = 32·3√2 = 96√2 (см²)
Таким образом S полн = 48 + 96√2 = 48(1+ 2√2) (см²).