Вариант 2.
1. написать уравнение прямой проходящей
через точки а(-3; 1) и в(2; -4). принадлежит ли
точка с м1; -3) этой прямой?
2. треугольник задан координатами своих
вершин к(-3; -2), m(3; -5), н(4; 4). найдите
ординату точки вс абсциссой равной -1,
принадлежавшей прямой км,
456-128 = 328, делим на М и Д
Д93 = 164, М93 = 164+128=292.
Для последующих годов пишем формулы
Д(93+n) = Д93+6n = 164+6n
М(93+n) =М93-2n = 292-2n
1a) Всего в 2015. Вычисляем n = 2015-1993 = 22 года.
Подставим в формулу
В(2015) = В(93)+4n = 456+22*4 = 544 чел. ОТВЕТ
1b) М(93-2n) = Д(93+6n) - поровну М и Д.
164+6n = 292-2n
8n=292-164 =128, n=16
N=1993+16= 2009 год. - ОТВЕТ
1с) Сколько Всего, когда Д=М-40 ?
164+6n +40 =292-2n
8n = 292-164-40 = 88 n=11 N=1993+11=2004 - год олимпиады.
В(04) = В(93)+4*11 = 456+44 = 500 - ОТВЕТ (М=270 Д=230 В=500)
1d) N - Д = 2*М
164 +6n = 2*(292-2n) = 584-4n
10n = 584-164 = 420 n = 42 N=1993+42= 2035 - ОТВЕТ
(М=208 Д=416 В=624)
1е) В среднем 550 чел. N=?
550 - В(93)= 550-456 =94 - делим на 2 для среднего n= 47
n =47 N=1993+47=2040 - ОТВЕТ (В(40)=644 В(16)=548 В(17)=552)
Проверено.
{3х+у=8
3x + 2x-2 =8
5x=8+2
5x=10
x=2
y=2*2 -2 = 4
ответ : (2;2)
{4х-3у=3 ⇒ y= (4x-3)/3
{4х-7у=-5
4x - 7/1 * (4x-3)/3 = -5
4x- ( 7(4x-3)/3) = -5 |×3
12 x - 7 (4x-3) = -15
12x - 28x + 21=-15
- 16x = - 36
x= (-36) / (-16) = 9/4
x= 2.25
y= ( 4*2.25-3) /3 = 6/3=2
ответ: (2,25 ; 2)
{7x+3y=-1 ⇒ x= (-1-3y)/7
{3x - 7y= 17
3(-1-3y) /7 - 7y =17 |×7
3(-1-3y) -49y= 119
-3 -9y-49y=119
-58y=119+3
y= 122/(-58) = - 61/29
y= - 2 3/29
x= (-1 - 3/1 * (-61/29) ) /7 = (-29/29 + 183/29 )/7 =
= 154/29 * 1/7= 22/29
ответ: ( 22/29 ; -2 3/29 )