Визнач цифру(-и), яку(-і) можна підставити замість *, щоб число 38 * 53 ділилося на И НЕ Е А . Цифри записуй у порядку зростання, без проміжків, використовуючи для поділу Символ :. Відповідь: замість * Потрібно підставити цифру(-и)
Дано: А - вьющиеся волосы а - гладкие волосы В - отсутствие глухоты b - глухота
Р ааBb × АаBb G аВ аb АВ аВ Ab ab F1 ааbb (первый ребенок) АаВb (второй ребенок) Следующий ребенок может получить любую из этих комбинаций: АаBB (вьющиеся волосы, отсут. глухоты); AaBb (вьющиеся волосы, отсут. глухоты); ааВВ (гладкие волосы, отсут. глухоты); ааВb (гладкие волосы, отсут. глухоты); АаBb (вьющиеся волосы, отсут. глухоты); Ааbb (вьющиеся волосы, глухота); ааBb (гладкие волосы, отсут. глухоты); aabb (гладкие волосы, глухота) Исходит такая вероятность: 3:3:1:1, где 3 - вьющиеся волосы и отсутствие глухоты, 3 - гладкие волосы и отсутствие глухоты, 1 - вьющиеся волосы и глухота, 1 - гладкие волосы и глухота Процентная вероятность: 37,5%:37,5%:12,5%:12,5% В ответе нам нужна вероятность появления детей глухих с вьющимися волосами, следовательно, ОТВЕТ: 12,5%
Надо построить треугольник, площадь которого равна площади трапеции. Пусть трапеция ABCD, AD II BC. Из С проводим прямую II диагонали BD до пересечения с продолжением AD. Пусть это точка Е. Ясно, что DBCE - параллелограмм. Треугольник ACE имеет ту же высоту, что и трапеция - это расстояние от С до AD (обозначим эту высоту СН), а АЕ = AD + BC. Очевидно, что площадь АСЕ равна площади ABCD ( = СН*(AD + BC)/2). Стороны треугольника АСЕ это AC = 15; СЕ = BD = 20; AE = AD + BC = 2*12,5 = 25. Не трудно убедится, что это треугольник, подобный "египетскому" - со сторонами (3,4,5). То есть это прямоугольный треугольник, и его площадь равна 15*20 / 2 = 150. ответ - площадь трапеции 150.
А - вьющиеся волосы
а - гладкие волосы
В - отсутствие глухоты
b - глухота
Р ааBb × АаBb
G аВ аb АВ аВ Ab ab
F1 ааbb (первый ребенок) АаВb (второй ребенок)
Следующий ребенок может получить любую из этих комбинаций:
АаBB (вьющиеся волосы, отсут. глухоты); AaBb (вьющиеся волосы, отсут. глухоты); ааВВ (гладкие волосы, отсут. глухоты); ааВb (гладкие волосы, отсут. глухоты); АаBb (вьющиеся волосы, отсут. глухоты); Ааbb (вьющиеся волосы, глухота); ааBb (гладкие волосы, отсут. глухоты); aabb (гладкие волосы, глухота)
Исходит такая вероятность:
3:3:1:1, где 3 - вьющиеся волосы и отсутствие глухоты, 3 - гладкие волосы и отсутствие глухоты, 1 - вьющиеся волосы и глухота, 1 - гладкие волосы и глухота
Процентная вероятность:
37,5%:37,5%:12,5%:12,5%
В ответе нам нужна вероятность появления детей глухих с вьющимися волосами, следовательно, ОТВЕТ: 12,5%
Пусть трапеция ABCD, AD II BC. Из С проводим прямую II диагонали BD до пересечения с продолжением AD. Пусть это точка Е. Ясно, что DBCE - параллелограмм.
Треугольник ACE имеет ту же высоту, что и трапеция - это расстояние от С до AD (обозначим эту высоту СН), а АЕ = AD + BC. Очевидно, что площадь АСЕ равна площади ABCD ( = СН*(AD + BC)/2).
Стороны треугольника АСЕ это AC = 15; СЕ = BD = 20; AE = AD + BC = 2*12,5 = 25.
Не трудно убедится, что это треугольник, подобный "египетскому" - со сторонами (3,4,5). То есть это прямоугольный треугольник, и его площадь равна 15*20 / 2 = 150.
ответ - площадь трапеции 150.