Внутри треугольника PQR взята такая точка S, что ∠PSR=110∘. К отрезкам SP и SR провели серединные перпендикуляры, которые пересекли отрезки QP и QR в точках X и Y (X лежит на QP, Y лежит на QR). Оказалось, что точки X, S и Y лежат на одной прямой. Найдите величину угла PQR в градусах.
Пошаговое объяснение:
Обозначим скорость скорого поезда за ν₁, а скорость товарного ν₂.
Тогда ν₂=ν₁-=ν₁-54 (км/ч)
(Умножение на 60 переводит минуты в часы, деление на 1000 переводит метры в километры)
Тогда получаем уравнение:
180/ν₂ - 180/ν₁ = 3
180/(ν₁-54) - 180/ν₁ = 3
180·ν₁-180·(ν₁-54) = 3·ν₁·(ν₁-54)
9720=3·ν₁²-162ν₁
3·ν₁²-162ν₁-9720=0
ν₁²-54ν₁-3240=0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-54)2 - 4·1·(-3240) = 2916 + 12960 = 15876
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 54 - √158762·1 = 54 - 1262 = -722 = -36
x2 = 54 + √158762·1 = 54 + 1262 = 1802 = 90
Так как скорость у нас положительная (поезд движется вперед), то выбираем х₂=ν₁=90 км/ч - скорость скорого поезда.
Тогда скорость товарного поезда:
ν₂=ν₁-54=90-54=36 км/ч
ответ: 36 км/ч
Проверка: 180/36 - 180/90 = 5-2=3. Все верно.
Подробнее - на -