В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
kovtunvadym
kovtunvadym
27.07.2022 09:05 •  Математика

Вот скриншот, ответьте


Вот скриншот, ответьте

Показать ответ
Ответ:

Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).

Решение находим с калькулятора.

Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).

Координаты векторов находим по формуле:

X = xj - xi; Y = yj - yi; Z = zj - zi

здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;

Например, для вектора AB

X = x2 - x1; Y = y2 - y1; Z = z2 - z1

X = 5-2; Y = 5-(-1); Z = 4-1

AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).

Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:

Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18

(Если что это как пример так ты сможешь сделать это одно и тоже почти!)

0,0(0 оценок)
Ответ:
20052281202
20052281202
20.12.2022 06:12

Основная теорема арифметики утверждает[1][2]:

Каждое натуральное число {\displaystyle n>1}n>1 можно представить в виде {\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}{\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}, где {\displaystyle p_{1},\ldots ,p_{k}}{\displaystyle p_{1},\ldots ,p_{k}} — простые числа, причём такое представление единственно, если не учитывать порядок следования множителей.

Если формально условиться, что произведение пустого множества чисел равно 1, то условие {\displaystyle n>1}n>1 в формулировке можно опустить, тогда для единицы подразумевается разложение на пустое множество простых: {\displaystyle 1=1}{\displaystyle 1=1}[3][4].

Как следствие, каждое натуральное число {\displaystyle n}n единственным образом представимо в виде

{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},}{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},} где {\displaystyle p_{1}<p_{2}<\ldots <p_{k}}{\displaystyle p_{1}<p_{2}<\ldots <p_{k}} — простые числа, и {\displaystyle d_{1},\ldots ,d_{k}}{\displaystyle d_{1},\ldots ,d_{k}} — некоторые натуральные числа.

Такое представление числа {\displaystyle n}n называется его каноническим разложением на простые сомножители.

Пошаговое объяснение:

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота