Каждое натуральное число {\displaystyle n>1}n>1 можно представить в виде {\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}{\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}, где {\displaystyle p_{1},\ldots ,p_{k}}{\displaystyle p_{1},\ldots ,p_{k}} — простые числа, причём такое представление единственно, если не учитывать порядок следования множителей.
Если формально условиться, что произведение пустого множества чисел равно 1, то условие {\displaystyle n>1}n>1 в формулировке можно опустить, тогда для единицы подразумевается разложение на пустое множество простых: {\displaystyle 1=1}{\displaystyle 1=1}[3][4].
Как следствие, каждое натуральное число {\displaystyle n}n единственным образом представимо в виде
{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},}{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},} где {\displaystyle p_{1}<p_{2}<\ldots <p_{k}}{\displaystyle p_{1}<p_{2}<\ldots <p_{k}} — простые числа, и {\displaystyle d_{1},\ldots ,d_{k}}{\displaystyle d_{1},\ldots ,d_{k}} — некоторые натуральные числа.
Такое представление числа {\displaystyle n}n называется его каноническим разложением на простые сомножители.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с калькулятора.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18
(Если что это как пример так ты сможешь сделать это одно и тоже почти!)
Основная теорема арифметики утверждает[1][2]:
Каждое натуральное число {\displaystyle n>1}n>1 можно представить в виде {\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}{\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}, где {\displaystyle p_{1},\ldots ,p_{k}}{\displaystyle p_{1},\ldots ,p_{k}} — простые числа, причём такое представление единственно, если не учитывать порядок следования множителей.
Если формально условиться, что произведение пустого множества чисел равно 1, то условие {\displaystyle n>1}n>1 в формулировке можно опустить, тогда для единицы подразумевается разложение на пустое множество простых: {\displaystyle 1=1}{\displaystyle 1=1}[3][4].
Как следствие, каждое натуральное число {\displaystyle n}n единственным образом представимо в виде
{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},}{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},} где {\displaystyle p_{1}<p_{2}<\ldots <p_{k}}{\displaystyle p_{1}<p_{2}<\ldots <p_{k}} — простые числа, и {\displaystyle d_{1},\ldots ,d_{k}}{\displaystyle d_{1},\ldots ,d_{k}} — некоторые натуральные числа.
Такое представление числа {\displaystyle n}n называется его каноническим разложением на простые сомножители.
Пошаговое объяснение: