1. Определим пройденный путь за 2 часа всадником скорость которого 12 километров в час.
12 * 2 = 24 километра.
2. Находим расстояние, которое второй всадник, если известно, что его скорость была 8 километров в час.
8 * 2 = 16 километров.
3. Узнаем сколько километров проехали всадники.
24 + 16 = 40 километров.
4. Найдем расстояние между всадниками, если изначально между ними было расстояние 15 километров.
40 + 15 = 55 километров.
ответ: Через 2 часа расстояние между всадниками будет 55 километров.
Пошаговое объяснение:
Сторона вырезаемого квадрата - х - будет высота коробки.
Получаем размеры коробки с вырезом.
а = 8 - 2*х - длина коробки
b = 5 - 2*x -ширина коробки и
х - высота коробки.
Объём коробки по формуле:
V = a*b*x = (8-2*x)*(5-2*x)*x - функция объема.
V(x) = 40*x - 26*x² + 4*x³
Максимум в корне первой производной.
V'(x) = 12*x² - 52*x + 40 = 0
Вычисляем дискриминант - D.
D = b² - 4*a*c = -52² - 4*(12)*(40) = 784 - дискриминант. √D = 28.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (52+28)/(2*12) = 80/24 = 3,33 - первый корень
x₂ = (-b-√D)/(2*a) = (52-28)/(2*12) = 24/24 = 1 - второй корень
3,33 и 1 - корни уравнения.
x = 1 и х = 3,33 - не подходит - слишком большой..
ответ: размеры квадрата = 1 дм .
Получили объём V =6*3*1 = 18 дм³
Рисунок к задаче в приложении.
Возможно такое решение сделать только графически - без производной.
1. Определим пройденный путь за 2 часа всадником скорость которого 12 километров в час.
12 * 2 = 24 километра.
2. Находим расстояние, которое второй всадник, если известно, что его скорость была 8 километров в час.
8 * 2 = 16 километров.
3. Узнаем сколько километров проехали всадники.
24 + 16 = 40 километров.
4. Найдем расстояние между всадниками, если изначально между ними было расстояние 15 километров.
40 + 15 = 55 километров.
ответ: Через 2 часа расстояние между всадниками будет 55 километров.
Надеюсь не будет ошибок.Пошаговое объяснение:
Сторона вырезаемого квадрата - х - будет высота коробки.
Получаем размеры коробки с вырезом.
а = 8 - 2*х - длина коробки
b = 5 - 2*x -ширина коробки и
х - высота коробки.
Объём коробки по формуле:
V = a*b*x = (8-2*x)*(5-2*x)*x - функция объема.
V(x) = 40*x - 26*x² + 4*x³
Максимум в корне первой производной.
V'(x) = 12*x² - 52*x + 40 = 0
Вычисляем дискриминант - D.
D = b² - 4*a*c = -52² - 4*(12)*(40) = 784 - дискриминант. √D = 28.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (52+28)/(2*12) = 80/24 = 3,33 - первый корень
x₂ = (-b-√D)/(2*a) = (52-28)/(2*12) = 24/24 = 1 - второй корень
3,33 и 1 - корни уравнения.
x = 1 и х = 3,33 - не подходит - слишком большой..
ответ: размеры квадрата = 1 дм .
Получили объём V =6*3*1 = 18 дм³
Рисунок к задаче в приложении.
Возможно такое решение сделать только графически - без производной.