Втаблице 2 зависимость массы (т) деревянного бруска от его объема (v). таблица 2 (см*) m (r) 12 18 12,6 16,8 30 _ 21 36 42 25,2 29,4 1. значения какой величины - независимая переменная? 2. значения какой величины - зависимая переменная? 3. запишите формулу зависимости массы (т) деревянного бруска от его объема (v).
1. Уравнение окружности в общем виде:
(x - x₀)² + (y - y₀)² = R²
где (х₀; у₀) - координаты центра,
R - радиус окружности.
Центр М(- 3; 2), R = 2.
Уравнение окружности:
(x + 3)² + (y - 2)² = 4
Чтобы проверить, проходит ли окружность через точку, надо ее координаты подставить в уравнение окружности. Если получим верное равенство - проходит.
D(- 3; 4)
(- 3 + 3)² + (4 - 2)² = 4
0 + 4 = 4 - верно, проходит.
2.
С(- 3; 1), D (- 5; 9)
Уравнение прямой в общем виде, если х₁ ≠ х₂:
y = kx + b
Подставив координаты точек, получим систему уравнений:
Вычтем из первого уравнения второе:
Уравнение прямой:
y = - 4x - 11
или
4x + y + 11 = 0
3. Чтобы найти координаты точки пересечения двух прямых, надо решить систему уравнений:
(2; - 5)
4. 4х + 3у - 24 = 0
а) координаты точки пересечения с Ох: у = 0
4x - 24 = 0
4x = 24
x = 6
A(6; 0)
координаты точки пересечения с Оy: x = 0
3y - 24 = 0
3y = 24
y = 8
B (0; 8)
б) М(х; у) - середина отрезка AB.
A(6; 0), B (0; 8)
Координаты середины отрезка равны полусумме соответствующих координат.
M(3; 4)
в) формула длины отрезка с концами в точках А(x₁; y₁) и В(х₂; у₂):
A(6; 0), B (0; 8)
AB = 10
5. у = х + 4 и у = - 2х + 1
а)
O(- 1; 3)
б) (x + 1)² + (y - 3)² = R²
B(2; - 1)
Подставим координаты точки В в уравнение и найдем радиус:
(2 + 1)² + (- 1 - 3)² = R²
9 + 16 = R²
R² = 25
(x + 1)² + (y - 3)² = 25
в) y = kx + b, y = 2x + 5
Если прямые параллельны, по коэффициенты k равны, значит
k = 2
y = 2x + b
Прямая проходит через точку В(2; - 1), подставим ее координаты:
- 1 = 2 · 2 + b
b = - 5
y = 2x - 5
С НАСТУПАЮЩИМ НОВЫМ ГОДОМ!вопросы в коменты писать и я отвечуа^2 - это а²
а - основание, 3 - показатель степени
Показатель степени при числе означает умножение числа само на себя столько раз, сколько указывает показатель степени.
а^4 = а•а•а•а
При умножении чисел, возведённых в степень, показатели степени складываются.
а^2 • а^6 = а^(2+6) = а^8
Отрицательный показатель степени при числе означает, что число оказывается в знаменателе.
а^(-1) = 1/а
c^(-5) = 1/(c^5)
Пример: а^5 • а^(-7)=а^(5-7)=а^(-2) =1/(а^2)
При возведении в степень числа, возведенного в степень, показатели степеней умножатся.
1.
а) а • а^(-3) + (1/5)^2 =а^1 • а^(-3) + (1/5)^2 =
= а^(1-3) + 1/25 = а^(-2) + 1/25 = 1/(а^2) + 1/25
б) ((-1/2)^-3)^-2) = (-1/2)^((-3)•(-2) = (-1/2)^6 =
= 1/(2^6) = 1/64 = 0,015625
в) (25/64)^-2 • 2^-6 =
= (64/25)^2 • 2-6 =
= ((2^6)/(5^2))^2 • 2^-6 =
= (2^12)/(5^4) • 2^-6 =((2^12)•(2^-6))/(5^4) =
= ((2^(12-6))/(5^4) = (2^6)/(5^4) =
= 64/625 = 0,1024
2.
7•а^3 • b^-2 •(b/a)^-3 : (a•b^-3)^2 =
= 7•а^3 • b^-2 • b^-3 • a^3 • a^-2 • b^6 =
= 7 • a^(3+3-2) • b^(-2-3+6) = 7a^4 • b = 7ba^4
3.
(((3•a^-1 • b • x^-2 • c^2)/(2•x^-3 • y•c•a^-2))^2)^-1 =
=(3•a^-1 • b • x^-2 • c^2 • 2^-1 • x^3 • y^-1 • c^-1 • a^2)^-2 =
= (3/2 • a^(-1+2) •b• c^(2-1) • x^(-2+3) • y^-1)^-2=
= (3/2 • a • b • c • x • y^-1) ^-2 =
= (2/3)^2 • a^-2 • b^-2 • c^-2 • x^-2 • y^((-1)(-2))=
= 2y^2/((3abcx)^2)
4.
Sn = a1 • (q^n - 1) / (q - 1) - сумма первых n членов геометрической прогрессии
где n - количество членов последовательности,
a1 - 1-ый член последовательности,
а- n-ый член последовательности,
q - знаменатель последовательности.
а1 = -2/3
q = 1/2
Находим сумму первых шести членов геометрической прогрессии:
S6 = (-2/3) • ((1/2)^6 - 1)) / (1/2 - 1) =
= (-2/3) • (1/64 - 1) / ( -1/2) =
= 2•2 • (1/64 - 64/64) / 3 =
= 4 • (-63/64) / 3 = -21/16 сумма первых шести членов заданной геометрической прогрессии.
ответ: -21/16.
5.
2^6 • 3^-4 = 2^6 / (3^4) = 64/81
Значит,
(8/9)^2= 64/81 - первое дробное
число 8/9
((2^3) / (3^2))^2 = 64/81 - второе дробное число (2^3)/(3^2)