В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Alina221006
Alina221006
20.10.2020 12:31 •  Математика

второе задание

Распишите как его делать, фото там..


второе задание Распишите как его делать, фото там..

Показать ответ
Ответ:
danifoxyforevep08iko
danifoxyforevep08iko
09.03.2023 10:21

Воспользуемся методом, позволяющим находить в разложении многочлена на скобки выражения вида x^2-a. Если a>0, это сразу дает два решения \pm \sqrt{a}, если a<0, действительные корни эта скобка не дает, но по любому степень многочлена будет понижена на 2. Кстати, решения вида  \pm \lambda я называю парными; название мне кажется оправданным. Легко доказать, что многочлен P(x) имеет парные корни \pm\lambda тогда и только тогда, когда они обращают в ноль по отдельности сумму четных степеней и сумму нечетных степеней. Это следует из того, что сумма четных степеней равна \frac {P(\lambda)+P(-\lambda)}{2}, а сумма нечетных равна \frac{P(\lambda)-P(-\lambda)}{2}.

Кстати, это утверждение будет работать и для нулевого корня, если считать, что ноль является парным корнем, в том случае, когда он является кратным.

1) Разбиваем на четные и нечетные степени: x^6+2x^4-5x^2-6=t^3+2t^2-5t-6=0\ \ (t=x^2);

-2x^5+2x^3+4x=-2x(t^2-t-2)=-2x(t-2)(t+1)=0;\ t_1=2; t_2=-1;

найденные t удовлетворяют и первому уравнению, поэтому оно принимает вид (t-2)(t+1)(t+3)=0, а поскольку исходное уравнение может быть получено в виде суммы этих двух, получаем

(t-2)(t+1)(t+3)-2x(t-2)(t+1)=0; (t-2)(t+1)(t-2x+3)=0; (x²-2)(x²+1)(x²-2x+3)=0.

ответ: \pm\sqrt{2}.

2)  t³+6t²+11t+6=0; -2x(t^2+3t+2)=-2x(t+1)(t+2)=0;

t³+6t²+11t+6=(t+1)(t+2)(t+3); все уравнение принимает вид

(t+1)(t+2)(t+3)-2x(t+1)(t+2)=(t+1)(t+2)(t-2x+3)=(x²+1)(x²+2)(x²-2x+3)=0.

ответ: решений нет.

0,0(0 оценок)
Ответ:
malenkayakreyz
malenkayakreyz
14.05.2021 10:56
1) 2^{x+1}+2^x=3 ;
2) &#10;x-4 = \sqrt{21-4x} ;

Верно?
Вы хоть напишите, что это разные уравнения, а не связанные в систему или совокупность.

Внизу есть символ-икнока "ПИ".
С его можно коректно оформлять задачи.

1*) решим вот такое 2^{x+3}+2^x=4.5 ;
2^x*2^3+2^x=4.5 ; ;
8 * 2^x+2^x=4.5 ; ;
2^x (8+1)=4.5 ; ;
9 * 2^x=4.5 ; ;
2^x=\frac{4.5}{9} ; ;
2^x=\frac{1}{2} ; ;
x=-1 ; ;

2*) решим вот такое: &#10;x-3 = \sqrt{21-2x} ;

Сначала ищём ОДЗ. Иначе будут неконтролируемые посторонние корни.
По определению корня, подкоренное выражение неотрицательно. А кроме того, значение квадратного арифметического корня само по себе неотрицательно. А значит:

&#10;x-3 = 0 ;
21-2x = 0 ;

Отсюда:
&#10;x = 3 ;
10.5 = x ;
Значит x ∈ [ 3 ; 10.5 ]

Теперь исходное уравнение возводим в квадрат:
&#10;x-3 = \sqrt{21-2x} ; => &#10;(x-3)^2 = 21-2x ;
x^2-2*x*3+3^2 = 21-2x ;
x^2-4x-12 = 0 ;
D_1=2^2-(-12)=16=4^2 ;
x_{1,2}=-(-2)+/-4=2+/-4 ;
x_1=-2 ;
x_2=6 ;

x_1=-2 ; не подходит по ОДЗ. Значит решение единственно:
x=6;
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота