x2−6x−9=6x+5−x22x2−12x−14=0x2−6x−7=0x1=−1,x2=7 Сверху фигуру ограничивает график функции y=6x+5−x2, а снизу график функции y=x2−6x−9 (в интервале [−1;7]). Значит, нужно вычислить интеграл ∫−17((6x+5−x2)−(x2−6x−9))dx=∫−17(−2x2+12x+14)dx ∫−17(−2x2+12x+14)dx=−2x33+6x2+14x∣∣7−1==−2⋅733+6⋅72+14⋅7−(−2⋅(−1)33+6⋅(−1)2+14⋅(−1))==−6863+294+98−23−6+14==5123
площадь фигуры, ограниченной линиями, равна 5123
Пошаговое объяснение:
x2−6x−9=6x+5−x22x2−12x−14=0x2−6x−7=0x1=−1,x2=7 Сверху фигуру ограничивает график функции y=6x+5−x2, а снизу график функции y=x2−6x−9 (в интервале [−1;7]). Значит, нужно вычислить интеграл ∫−17((6x+5−x2)−(x2−6x−9))dx=∫−17(−2x2+12x+14)dx ∫−17(−2x2+12x+14)dx=−2x33+6x2+14x∣∣7−1==−2⋅733+6⋅72+14⋅7−(−2⋅(−1)33+6⋅(−1)2+14⋅(−1))==−6863+294+98−23−6+14==5123