y=(x+2)^2+4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
а) 1/12 и 1/35 = 35/420 и 12/420
12=2*2*3 35=5*7 НОК (12 и 35) = 12 * 35 = 420
420 : 12 = 35 - доп.множ. к 1/12 = (1*35)/(12*35) = 35/420
420 : 35 = 12 - доп.множ. к 1/35 = (1*12)(35*12) = 12/420
б) 17/96 и 41/72 = 51/288 и 164/288
96=2*2*2*2*2*3 72=2*2*2*3*3 НОК(96и72)=2*2*2*2*2*3*3=288
288 : 96 = 3 - доп.множ. к 17/96 = (17*3)/(96*3) = 51/288
288 : 72 = 4 - доп.множ. к 41/72 = (41*4)/(72*4) = 164/288
в) 5/56 и 17/29 = 145/1624 и 952/1624
56*29=1624 - наименьший общий знаменатель число)
1624 : 56 = 29 - доп.множ. к 5/56 = (5*29)/(56*29) = 145/1624
1624 : 29 = 56 - доп.множ. к 17/29 = (17*56)/(29*56) = 952/1624
г) 5/17 и 9/13 = 65/221 и 153/221
17*13=221-наименьший общий знаменатель (17и числа)
221 : 17 = 13 - доп.множ. к 5/17 = (5*13)/(17*13) = 65/221
221 : 13 = 17 - доп.множ. к 9/13 = (9*17)/(13*17) = 153/221
там ещё ест другие дроби
y=(x+2)^2+4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Пошаговое объяснение: