Если человек добивается поставленных целей, достигает задуманного с очевидным постоянством, то про него говорят, что он обладает силой воли. волевой человек способен на поступки не всегда соответствующие его желаниям. сила воли удержаться от решений, вызванных необдуманными желаниями, которые могут навредить в той или иной ситуации. сила воли определяется наличием в человеке определенных качеств характера. как правило, волевым называют такого человека, который смел, терпелив, решителен и верит в собственные возможности. это основные качества позволяющие достигать поставленных целей, быть успешным и востребованным в обществе. 1.бетани гамильтон. эта девушка выроста на гавайских островах в семье серферов и, кажется, не могла не связать свою жизнь с водой - она занималась серфингом с детства. однако в 13 лет она потеряла левую руку в результате нападения акулы. уже через месяц бетани вновь покоряла волны, а через два года выиграла престижные соревнования среди серфингистов. сегодня она является профессиональной серфингисткой и источником вдохновения для миллионов людей. ее биография легла в основу фильма «серфер души», который вышел на экраны в 2011 году. 2.хелен келлер в возрасте 19 месяцев из-за болезни потеряла зрение и слух. позже она училась по специальной программе для детей с особыми потребностями, получила степень бакалавра, написала несколько книг, и стала активным борцом за права женщин. 3.мелисса стоквелл. эта женщина служила в американской армии, а в 2004 году в результате взрыва заложенной у дороги бомбы, ей ампутировали ногу выше колена. но настоящий боец всегда остается бойцом. она начала плавать еще в больнице, в рамках курса , а в 2008 году приняла участие в паралимпийских играх, где поставила два рекорда в плавании на стометровке. для нее тоже не стоит вопрос о том, как тренировать силу воли, все проще: «я могу делать все, что захочу, с ногой или без нее», говорит мелисса стоквелл. у меня вышло что-то такое
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны. Доказательство. Рассмотрим два треугольника ABC и A1B1C1. Пусть в этих треугольниках равны стороны AB и A1B1, BC и B1C1, а угол ABC равен углу A1B1C1. Тогда треугольник A1B1C1 можно наложить на треугольник ABC так, чтобы угол A1B1C1 совпал с углом ABC. При этом можно расположить треугольник A1B1C1 так, чтобы сторона А1В1 совпала со стороной АВ, а сторона B1С1 - со стороной BС. (В случае необходимости вместо треугольника A1B1C1 можно рассматривать равный ему "перевернутый" треугольник, т. е. треугольник, симметричный A1B1C1 относительно произвольной прямой .) Тогда треугольники совпадут полностью, поскольку совпадут все их вершины.
Второй признак равенства треугольников
Если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. Доказательство. Пусть в треугольниках АВС и А 1 В 1 С 1 имеют место равенства AB= A1B1, ÐBAC = ÐB1A1C1, ÐАВС= ÐА1В1С1. Поступим так же, как и в предыдущем случае. Наложим треугольник А1В1С1 на треугольник АВС так, чтобы совпали стороны AB и A1B1 и прилегающие к ним углы. Как и в предыдущем случае, при необходимости треугольник А1В1С1 можно "перевернуть обратной стороной". Тогда треугольники совпадут полностью. Значит, они равны.
Третий признак равенства треугольников
Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны. Доказательство. Пусть для треугольников ABC и A1B1C1 имеют место равенства АВ = А1В1, ВС = В1С1, СА = С1А1. Перенесем треугольник А1В1С1 так, чтобы сторона А1В1 совпала со стороной АВ, при этом должны совпасть вершины A1 и A, B1 и B. Рассмотрим две окружности с центрами в A и B и радиусами соответственно AC и BC. Эти окружности пересекаются в двух симметричных относительно AB точках: C и C2. Значит, точка C1 после переноса указанным образом треугольника A1B1C1 должна совпасть либо с точкой C, либо с точкой C2. В обоих случаях это будет означать равенство треугольников ABC и A1B1C1, поскольку треугольники ABC и ABC2 равны (эти треугольники симметричны относительно прямой AB.)
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Доказательство. Рассмотрим два треугольника ABC и A1B1C1.
Пусть в этих треугольниках равны стороны AB и A1B1,
BC и B1C1,
а угол ABC равен углу A1B1C1.
Тогда треугольник A1B1C1 можно наложить на треугольник ABC так, чтобы угол A1B1C1 совпал с углом ABC.
При этом можно расположить треугольник A1B1C1 так, чтобы сторона А1В1 совпала со стороной АВ, а сторона B1С1 - со стороной BС. (В случае необходимости вместо треугольника A1B1C1 можно рассматривать равный ему "перевернутый" треугольник, т. е. треугольник, симметричный A1B1C1 относительно произвольной прямой .)
Тогда треугольники совпадут полностью, поскольку совпадут все их вершины.
Второй признак равенства треугольников
Если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Доказательство. Пусть в треугольниках АВС и А 1 В 1 С 1 имеют место равенства
AB= A1B1,
ÐBAC = ÐB1A1C1,
ÐАВС= ÐА1В1С1.
Поступим так же, как и в предыдущем случае. Наложим треугольник А1В1С1 на треугольник АВС так, чтобы совпали стороны AB и A1B1 и прилегающие к ним углы. Как и в предыдущем случае, при необходимости треугольник А1В1С1 можно "перевернуть обратной стороной".
Тогда треугольники совпадут полностью. Значит, они равны.
Третий признак равенства треугольников
Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
Доказательство. Пусть для треугольников ABC и A1B1C1
имеют место равенства АВ = А1В1,
ВС = В1С1,
СА = С1А1.
Перенесем треугольник А1В1С1 так, чтобы сторона А1В1 совпала со стороной АВ, при этом должны совпасть вершины A1 и A, B1 и B.
Рассмотрим две окружности с центрами в A и B и радиусами соответственно AC и BC.
Эти окружности пересекаются в двух симметричных относительно AB точках: C и C2. Значит, точка C1 после переноса указанным образом треугольника A1B1C1 должна совпасть либо с точкой C, либо с точкой C2.
В обоих случаях это будет означать равенство треугольников ABC и A1B1C1, поскольку треугольники ABC и ABC2 равны (эти треугольники симметричны относительно прямой AB.)