В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
miran3
miran3
30.12.2020 23:33 •  Математика

Вычислить площадь фигуры ограниченной линиями

Решить дифференциальное уравнение с разделяющими переменными


Вычислить площадь фигуры ограниченной линиямиРешить дифференциальное уравнение с разделяющими перем

Показать ответ
Ответ:
ValeryaKN15
ValeryaKN15
30.05.2020 05:57

ответ: 4) S=12, 5) 3*y²-2*x³-3=0.

Пошаговое объяснение:

4) Искомая площадь S=F(3)-F(0), где F(x)=∫(x²+1)*dx - первообразная функции y(x). Отсюда F(x)=1/3*x³+x+C, и тогда S=1/3*3³+3+C-C=12.

5) Разделив обе части уравнения на y, получаем уравнение с разделёнными переменными x²*dx=y*dy. Интегрируя, получаем: 1/2*y²=1/3*x³+C. Используя условие y(0)=1, приходим к уравнению 1/2=0+C, откуда C=1/2. Отсюда 1/2*y²=1/3*x³+1/2, или 3*y²-2*x³-3=0. Проверка: исходное уравнение можно записать в виде dy/dx=x²/y. Дифференцируя полученное решение по x, получаем: 6*y*y'-6*x²=0, откуда y'=dy/dx=x²/y, что совпадает с исходным уравнением - значит, уравнение решено правильно.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота