Предложим, что основание равнобедренного треугольника = 7 см, значит, боковые стороны равны (из определения равнобедренного треугольника "Равнобедренный треуголник - это треугольник, у которого боковые стороеы равны"), найдем их.19 - 7 = 12 см. 12:2 = 6 см.
Вспомним "Неравенство треугольников". Каждая сторона треугольника меньше суммы двух других сторон. Возьмем треугольник АВС, например (прикреплен к ответу). Проверяем.
AB < AC+BC AC > AB+BC ВС < AB+AC
6 см < 13 см 7 см < 12 см 6 см < 13 см
Мы доказали, что такой треугольник существует.
ответ: основание = 7 см, боковые стороны = по 6 см каждая.
a)15cosx=3cosx·(0,2)–sinx;
15cosx=(3·5)cosx=3cosx·5cosx;
(0,2)–sinx=(1/5)–sinx=(5–1)–sinx=5sinx;
уравнение принимает вид:
3cosx·5cosx=3cosx·5sinx;
3cosx > 0
5cosx=5sinx
cosx=sinx
tgx=1
x=(π/4)+πk, k∈z
б) чтобы найти корни, принадлежащие отрезку [–3π; –3π/2] рассмотрим неравенства.
–3π ≤ (π/4)+πk ≤ –3π/2, k∈z
–3 ≤ (1/4)+k ≤ –3/2, k∈z
–3 целых 1/4 ≤ k ≤ (1/4)–(3/2), k∈z
–3 целых 1/4 ≤ k ≤ (–5/4), k∈z
неравенству удовлетворяют k=–3 и k=–2
при k=–3
x=(π/4)–3π=–11π/4
при k=–2
x=(π/4)–2π=–7π/4
о т в е т. а)(π/4)+πk, k∈z; б) –11π/4; –7π/4.
Предложим, что основание равнобедренного треугольника = 7 см, значит, боковые стороны равны (из определения равнобедренного треугольника "Равнобедренный треуголник - это треугольник, у которого боковые стороеы равны"), найдем их.19 - 7 = 12 см. 12:2 = 6 см.
Вспомним "Неравенство треугольников". Каждая сторона треугольника меньше суммы двух других сторон. Возьмем треугольник АВС, например (прикреплен к ответу). Проверяем.
AB < AC+BC AC > AB+BC ВС < AB+AC
6 см < 13 см 7 см < 12 см 6 см < 13 см
Мы доказали, что такой треугольник существует.
ответ: основание = 7 см, боковые стороны = по 6 см каждая.