В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
alex8353
alex8353
30.05.2021 04:24 •  Математика

Выписали все делители натурального числа n, кроме самого числа n. оказалось, что самый большое из выписанных чисел равно 1001. сколько таких чисел n, для которые могло такое произойти?

Показать ответ
Ответ:
витка9
витка9
09.10.2021 05:08

Пусть прыжки по часовой стрелке обозначаются со знаком "плюс", а против часовой стрелке - со знаком "минус".

Найдем, какие более простые прыжки с точки зрения перемещения (то есть по модулю) можно совершить.

Изначально имеется два прыжка (+21) и (-15) Выполним их по очереди:

+21-15=+6

Итак, каким-то образом можно выполнить прыжок (+6).

Сгруппируем прыжки (+6) и (-15):

+6-15=-9

Таким образом, можно выполнить прыжок (-9).

Наконец, сгруппируем прыжки (+6) и (-9):

+6-9=-3

Также выполним прыжок (-3).

Получить прыжок с меньшим перемещением (кроме тривиально нулевого) невозможно.

Обратим внимание на то, что общее число каменей 2019, а также все рассмотренные прыжки кратны 3. Это означает, что при любом прыжке номер исходного и номер конечного камня дают одинаковые остатки при делении на 3.

Посетить все камни с номерами, дающими при делении на 3 один и тот же остаток, можно. У нас есть прыжок (-3).

Таким образом, мы посещаем либо все камни с номерами, кратными 3, либо все с номерами, дающими при делении на 3 остаток 1, либо все с номерами, дающими при делении на 3 остаток 2. И тех и других и третьих поровну в количестве \dfrac{2019}{3}=673 штуки.

ответ: 673

0,0(0 оценок)
Ответ:
Sivcova942
Sivcova942
04.03.2020 05:24

Пошаговое объяснение:

Общую схему рассмотрим в примере 1) 2,1(6).

Пусть число а,b(c) периодичное, где а - целая часть, b - число в предпериоде, c - число в периоде, в нашем примере а=2, b=1, c=6. Чтобы преобразовать эту дробь в обыкновенную нужно придерживаться следующему правилу:

а) Считаем количество цифр в периоде десятичной дроби и обозначаем количество цифр через k, в нашем примере k=1, так как число 6 состоит из одной цифры;

б) Считаем количество цифр, стоящих в предпериоде, то есть количество цифр, стоящих после запятой, но до периода десятичной дроби и обозначаем количество цифр через m, в нашем примере m=1, так как число 1 состоит из одной цифры;

в) Записываем все цифры после запятой (включая цифры из периода) в виде натурального числа , в нашем примере n=16;

г) Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа , в нашем примере s=1;

д) Подставляем найденные значения в формулу

a+\frac{n-s}{(10^{k}-1)*10^{m}}

Нетрудно видеть, что  10^{k}-1 состоит из k цифр 9, а  10^{m} из m цифр 0 после 1.

В нашем примере

a+\frac{n-s}{(10^{k}-1)*10^{m}}=2+\frac{16-1}{(10^{1}-1)*10^{1}}=2+\frac{15}{9*10}=2+\frac{15}{90}=2\frac{1}{6}

2) 5,14(33) ⇒ a=5, k=2, m=2, n=1433, s=14. Тогда

a+\frac{n-s}{(10^{k}-1)*10^{m}}=5+\frac{1433-14}{(10^{2}-1)*10^{2}}=5+\frac{1419}{99*100}=5+\frac{1419}{9900}=5+\frac{43}{300}=5\frac{43}{300}

3) 0,11(35) ⇒ a=0, k=2, m=2, n=1135, s=11. Тогда

a+\frac{n-s}{(10^{k}-1)*10^{m}}=0+\frac{1135-11}{(10^{2}-1)*10^{2}}=\frac{1124}{9900}=\frac{281}{2475}

4) 0,214(45) ⇒ a=0, k=2, m=3, n=21445, s=214. Тогда

a+\frac{n-s}{(10^{k}-1)*10^{m}}=0+\frac{21445-214}{(10^{2}-1)*10^{3}}=\frac{21231}{99000}=\frac{2359}{11000}

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота