Наибольшая диагональ D правильной шестиугольной призмы - это гипотенуза прямоугольного треугольника, где катеты - боковое ребро, равное высоте призмы H, и диагональ d основы (это шестиугольник), равная двум сторонам основы (или двум радиусам описанной окружности). H = D*sin 60° = 12*(√3/2) = 6√3 см. d = D*cos 60° = 12*0,5 = 6 см. Сторона основы призмы равна половине d: a = d/2 = 6/2 = 3 см. Площадь основы (шестиугольника) равна: So = 3√3a²/2 = 3√3*9 /2 = 27√3/2 см². Объём призмы V = So*H = (27√3/2)*6√3 = 243 см³.
Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2; следовательно, вероятность проигрыша q также равна 1/2. Так как во всех партиях вероятность выигрыша постоянна и безразлично, в какой последовательности будут выиграны партии, то применима формула Бернулли. Найдем вероятность того, что две партии из четырех будут выиграны:
Р4 (2)=C42p2q2 = 4*3/(1*2)*(1/2)2(1/2)2 = 6/16.
Найдем вероятность того, что будут выиграны три партии из шести:
Р6(3)=C63p3q3 = 6*5*4/(1*2*3)*(1/2)3(1/2)3=5/16.
Так как Р4(2)> Р6(3), то вероятнее выиграть две партии из четырех, чем три из шести
H = D*sin 60° = 12*(√3/2) = 6√3 см.
d = D*cos 60° = 12*0,5 = 6 см.
Сторона основы призмы равна половине d:
a = d/2 = 6/2 = 3 см.
Площадь основы (шестиугольника) равна:
So = 3√3a²/2 = 3√3*9 /2 = 27√3/2 см².
Объём призмы V = So*H = (27√3/2)*6√3 = 243 см³.
Відповідь:
Решение задачи:
Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2; следовательно, вероятность проигрыша q также равна 1/2. Так как во всех партиях вероятность выигрыша постоянна и безразлично, в какой последовательности будут выиграны партии, то применима формула Бернулли. Найдем вероятность того, что две партии из четырех будут выиграны:
Р4 (2)=C42p2q2 = 4*3/(1*2)*(1/2)2(1/2)2 = 6/16.
Найдем вероятность того, что будут выиграны три партии из шести:
Р6(3)=C63p3q3 = 6*5*4/(1*2*3)*(1/2)3(1/2)3=5/16.
Так как Р4(2)> Р6(3), то вероятнее выиграть две партии из четырех, чем три из шести
Покрокове пояснення: