если следовать моей логике,то получается у нас так..
100,300,700...
разберём изначально данные числа,и действующую здесь закономерность последовательности
было 100,стало 300,следовательно
число изменилось на +200,то есть 100+(200)= 300
дальше значит у нас 300,700
число изменилось на +400,то есть 300+(400)=700
думаю закономерность последовательности здесь ясна..
прибавляемая к изначальному числу сумма,с каждым разом увеличивается на 200,то есть
сначала к 100 прибавляем 200, получается 300,потом к триста прибавляем уже не те 200,а уже 400,ТК каждый раз,к получившемуся числу прибавляем на 200 больше..
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
если следовать моей логике,то получается у нас так..
100,300,700...
разберём изначально данные числа,и действующую здесь закономерность последовательности
было 100,стало 300,следовательно
число изменилось на +200,то есть 100+(200)= 300
дальше значит у нас 300,700
число изменилось на +400,то есть 300+(400)=700
думаю закономерность последовательности здесь ясна..
прибавляемая к изначальному числу сумма,с каждым разом увеличивается на 200,то есть
сначала к 100 прибавляем 200, получается 300,потом к триста прибавляем уже не те 200,а уже 400,ТК каждый раз,к получившемуся числу прибавляем на 200 больше..
ну и получаем..
100+200={300}
300+400={700}
700+600={1300}
1300+800={2100}
2100+1000=получается наше конечное число "3100"
вот и все решение данной закономерности..
пропущенные числа :1300,2100