Определим какой угол нужно найти. Так как MA - перпендикуляр, то MA перпендикярна AD, AD перпендикулярна AC, значит по теореме о трех перпендикулярах DM перпендикулярна AC. Значит надо найти угол MDA. Из прямоугольного треугольника ABC: AB = CD = 2, BC = AD = 2^(1/2) Тогда по теореме Пифагора AC^2 = AB^2 + BC^2 => AC^2 = 4 + 2 = 6 => AC = 6^(1/2) Из прямоугольного треугольника MAC: AC = 6^(1/2), MCA = 30 (угол между прямой МС и плоскостью ABCD равен углу между прямой МС и проекцией МС на плоскость, для этого проводим перпендикуляр, опущенный из точки М на плоскость, то есть МА, тогда проекцией будет АС, а угол между МС и АС, это и есть угол АСМ) tg MCA = MA/AC => MA = tg MCA * AC MA = tg 30 * 6^(1/2) = 3^(1/2)/3 * 6^(1/2) = 18^(1/2)/3 = 2^(1/2) Из прямоугольного треугольника MAD: AD = 2^(1/2), AM = 2^(1/2) tg MDA = MA/AD = 2^(1/2)/2^(1/2) = 1 Значит MDA = 45
Так как MA - перпендикуляр, то MA перпендикярна AD, AD перпендикулярна AC, значит по теореме о трех перпендикулярах DM перпендикулярна AC.
Значит надо найти угол MDA.
Из прямоугольного треугольника ABC:
AB = CD = 2, BC = AD = 2^(1/2)
Тогда по теореме Пифагора
AC^2 = AB^2 + BC^2 => AC^2 = 4 + 2 = 6 => AC = 6^(1/2)
Из прямоугольного треугольника MAC:
AC = 6^(1/2), MCA = 30 (угол между прямой МС и плоскостью ABCD равен углу между прямой МС и проекцией МС на плоскость, для этого проводим перпендикуляр, опущенный из точки М на плоскость, то есть МА, тогда проекцией будет АС, а угол между МС и АС, это и есть угол АСМ)
tg MCA = MA/AC => MA = tg MCA * AC
MA = tg 30 * 6^(1/2) = 3^(1/2)/3 * 6^(1/2) = 18^(1/2)/3 = 2^(1/2)
Из прямоугольного треугольника MAD:
AD = 2^(1/2), AM = 2^(1/2)
tg MDA = MA/AD = 2^(1/2)/2^(1/2) = 1
Значит MDA = 45
АМ=2х; NВ=3х; АВ=2х+х+3х=6х
Отрезки МД и NС делят прямоугольник АВСД на три фигуры:
треугольник АМД, трапецию ДМNС и треугольник ВNС
Площадь треугольника АМД (S1) равна:
S1=1/2 * АМ * АД=1/2 * 2х * АД=х*АД
Площадь треугольника ВNC (S2) равна:
S2=1/2 * ВN * ВС, так как ВС=АД, то:
S2=1/2 * 3х * АД=3/2 * х * АД
Площадь прямоугольника АВСД (S3) равна:
S3=АВ*АД=6х*АД
Площадь трапеции ДМNС (S4) равна:
S4=S3-(S1+S2)=6х*АД-(х*АД+3/2 *х*АД)=7/2 *х*АД
Отношение площадей равно:
S1:S4:S2=х*АД : 7/2 *х*АД : 3/2 *х*АД=1:7/2:3/2=1:3,5:1,5
ответ: 1:3,5:1,5