Обозначим слона как a а его номер a1 . Значит у нас имеется слоны А1 А2 А3 А4 А5 а6 А7 а8 вес всех этих слонов равен А1+ А2+А3+А4+А5+А6+А7+ А8 РОВНО К
А3 = А1 +А2
А4 =А2+ А1 +А2
А5 = 3А2+2А1
А6= 5А2+3А1
А7= 8А2+5А1
А8 =13А2+8А1
Откуда
А1+А2+А3+А4+А5+А6+А7+А8=33А2+21А1
После чего делим их на три кучки в Кучке С будут слоны А7,А5,А6 , в Кучке В будут слоны А3, А4, А8 . Можно заметить что слон А3 равен маме слонов А1 +А2. Поэтому можно сначала взвесить кучки А и В а потом в Кучке В заменить слона А3 на слонов А1 + А2. И при этом если кучки равны значит никто не похудел а если какая то меньше значит там какой-то слон похудел
А вообще-то не хорошо списывать на Олимпиаде Турнир городов как ни стыдно
Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.
Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .
По известной формуле площадь такой «шапочки» равна .
Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.
Обозначив количество больших граней через n, получим , то есть .
Решение заканчивается проверкой того, что .
Примечание. Легко видеть, что у куба шесть больших граней.
Поэтому приведенная в задаче оценка числа больших граней является точной.
Обозначим слона как a а его номер a1 . Значит у нас имеется слоны А1 А2 А3 А4 А5 а6 А7 а8 вес всех этих слонов равен А1+ А2+А3+А4+А5+А6+А7+ А8 РОВНО К
А3 = А1 +А2
А4 =А2+ А1 +А2
А5 = 3А2+2А1
А6= 5А2+3А1
А7= 8А2+5А1
А8 =13А2+8А1
Откуда
А1+А2+А3+А4+А5+А6+А7+А8=33А2+21А1
После чего делим их на три кучки в Кучке С будут слоны А7,А5,А6 , в Кучке В будут слоны А3, А4, А8 . Можно заметить что слон А3 равен маме слонов А1 +А2. Поэтому можно сначала взвесить кучки А и В а потом в Кучке В заменить слона А3 на слонов А1 + А2. И при этом если кучки равны значит никто не похудел а если какая то меньше значит там какой-то слон похудел
А вообще-то не хорошо списывать на Олимпиаде Турнир городов как ни стыдно
Пошаговое объяснение:
Пусть R — радиус шара.
Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.
Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .
По известной формуле площадь такой «шапочки» равна .
Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.
Обозначив количество больших граней через n, получим , то есть .
Решение заканчивается проверкой того, что .
Примечание. Легко видеть, что у куба шесть больших граней.
Поэтому приведенная в задаче оценка числа больших граней является точной.