Поскольку колода делится пополам и количество черных и красных карт равно, то есть только одна ситуация, когда их число в половинах колоды будет равно: 3/3 в одной и 3/3 в другой. Первая ситуация определяет вторую.
Следовательно, остается найти только первую ситуацию (вероятность):
2 * ( 6! / (3! * 3!) = 2 * (6*4*5 / 3 * 2 * 1) = 2 * (4 * 5 / 1) = 2 *4 * 5 = 40 это количество вариантов, при которых выпадает требуемая ситуация.
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
Пошаговое объяснение:
Поскольку колода делится пополам и количество черных и красных карт равно, то есть только одна ситуация, когда их число в половинах колоды будет равно: 3/3 в одной и 3/3 в другой. Первая ситуация определяет вторую.
Следовательно, остается найти только первую ситуацию (вероятность):
2 * ( 6! / (3! * 3!) = 2 * (6*4*5 / 3 * 2 * 1) = 2 * (4 * 5 / 1) = 2 *4 * 5 = 40 это количество вариантов, при которых выпадает требуемая ситуация.
Общее число варинтов будет 12! / (6! * 6!) = (12 * 11 * 10 * 9 *8 *7) / (6 * 5 *4 * 3* 2) = (2 * 11 * 2 * 3 * 2 *7) / 2 = 2 * 11 * 2 *3 = 132
40 / 132 = 0,033 - вероятность того, что число черных и красных будет одинаково.
190 прямых
Пошаговое объяснение:
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
C₂₀²=20!/((20-2)!2!)=19*20/2=190.