.Является ли равенство n−u=−(u−n) тождеством?
Докажи.
После тождественных преобразований в правой части получишь выражение:
__ __ u
(знак впиши в отдельное окошко).
Равенство тождеством.
.Является ли равенство (m+b)2=(b+m)2 тождеством?
Докажи.
После тождественных преобразований
в левой части получишь выражение: m__ __ __m __+__^2
В правой части получится выражение: b__ __ __bm+__^2
Вывод: равенствотождеством.
___ это то куда надо вставить или знак или число
Обозначим поля квадратной таблицы через a₁, a₂, ... a₉. По условию
a₁ * a₂ * a₄ * a₅ = 32
a₂ * a₃ * a₅ *a₆ = 32
a₄ * a₅ * a₇ * a₈ = 32
a₅ * a₆ * a₈ * a₉ = 32
Также выполняются равенства
a₁ * a₂ * a₃ = 16
a₄ * a₅ * a₆ = 16
a₇ * a₈ * a₉ = 16
Перемножим первое и второе из этих равенств
a₁ * a₂ * a₃ * a₄ * a₅ * a₆ = 16²
Но так как a₁ * a₂ *a₄ * a₅ = 32, то a₃ * a₆ = 8 и так как a₂ * a₃ * a₅ * a₆ = 32, то a₁ * a₄ = 8. Отсюда a₇ = 2, a₉ = 2 и a₈ = 4.
Перемножим второе и третье равенства
a₄ * a₅ * a₆ * a₇ * a₈ * a₉ = 16²
Так как a₄ * a₅ * a₇ *a₈ = 32, то a₆ * a₉ = 8 и так как a₅ * a₆ *a₈ *a₉ = 32, то a₄ * a₇ = 8. Отсюда a₆ = 4, a₄ = 4 и a₅ = 1.
То есть в центре таблицы стоит единица. Вся таблица выглядит так:
2 4 2
4 1 4
2 4 2
ответ: В центре таблицы стоит единица.
Наличие корней линейного уравнения зависит от значений коэффициентов a и b. При этом линейное уравнение a·x+b=0 имеет
единственный корень при a≠0,
не имеет корней при a=0 и b≠0,
имеет бесконечно много корней при a=0 и b=0, в этом случае любое число является корнем линейного уравнения.
Поясним, как были получены эти результаты.
Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям, то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:
перенос слагаемого из одной части уравнения в другую с противоположным знаком,
а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.
Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b.
А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.
Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a, после этого оно преобразуется к виду x=(−b):a, этот результат можно записать с использованием дробной черты как .
Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .
Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.
Обозначим корень как x1. Предположим, что существует еще один корень линейного уравнения, который обозначим x2, причем x2≠x1, что в силу определения равных чисел через разность эквивалентно условию x1−x2≠0. Так как x1 и x2 корни линейного уравнения a·x+b=0, то имеют место числовые равенства a·x1+b=0 и a·x2+b=0. Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств, имеем a·x1+b−(a·x2+b)=0−0, откуда a·(x1−x2)+(b−b)=0 и дальше a·(x1−x2)=0. А это равенство невозможно, так как и a≠0 и x1−x2≠0. Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0.
Так мы решили линейное уравнение a·x+b=0 при a≠0. Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0.
При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0. Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x, при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0. Это равенство верное, когда b=0, а в остальных случаях при b≠0 это равенство неверное.
Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0, так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0. А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0.
Пошаговое объяснение: