В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
sonya19970
sonya19970
09.01.2022 04:40 •  Математика

Задача 1079 математики 5 класс с краткой записью​

Показать ответ
Ответ:
varvaraa2
varvaraa2
21.02.2020 14:07
3+3+3+3+3+3+3=21                                                                                               5+5+5+5=20                                                                                                           8+6+8+6+5+1=34                                                                                                   8+8+0=16                                                                                                               6+6+4=16                                                                                                                7-7-7=0                                                                                                                  8+18+28+38=92
0,0(0 оценок)
Ответ:
marina07102
marina07102
03.01.2022 22:51

1. 2*x + 3*y = 15;

2. x2 + y2 = 4;

3. x*y = -1;

4. 5*x3 + y2 = 8.

Каждое из представленных выше уравнений является уравнением с двумя переменными. Множество точек координатной плоскости, координаты которых обращают уравнение в верное числовое равенство, называется графиком уравнения с двумя неизвестными.

График уравнения с двумя переменными

Уравнения с двумя переменными имеют большое многообразие графиков. Например, для уравнения 2*x + 3*y = 15 графиком будет прямая линия, для уравнения x2 + y2 = 4 графиком будет являться окружность с радиусом 2, графиком уравнения y*x = 1 будет являться гипербола и т.д.

У целых уравнений с двумя переменными тоже существует такое понятие, как степень. Определяется эта степень, так же как для целого уравнения с одной переменной. Для этого приводят уравнение к виду, когда левая часть есть многочлен стандартного вида, а правая – нуль. Это осуществляется путем равносильных преобразований.

Графический решения систем уравнения

Разберемся, как решать системы уравнений, которые будут состоять из двух уравнений с двумя переменными. Рассмотрим графический решения таких систем.

Пример 1. Решить систему уравнений:

{ x2 + y2 = 25

{y = -x2 + 2*x + 5.

Построим графики первого и второго уравнений в одной системе координат. Графиком первого уравнения будет окружность с центром в начале координат и радиусом 5. Графиком второго уравнения будет являться парабола с ветвями, опущенными вниз.

Все точки графиков будут удовлетворять каждый своему уравнению. Нам же необходимо найти такие точки, которые будут удовлетворять как первому, так и второму уравнению. Очевидно, что это будут точки, в которых эти два графика пересекаются.

Используя наш рисунок находим приблизительные значения координат, в которых эти точки пересекаются. Получаем следующие результаты:

A(-2,2;-4,5), B(0;5), C(2,2;4,5), D(4,-3).

Значит, наша система уравнений имеет четыре решения.

x1 ≈ -2,2; y1 ≈ -4,5;

x2 ≈ 0; y2 ≈ 5;

x3 ≈ 2,2; y3 ≈ 4,5;

x4 ≈ 4,y4 ≈ -3.

Если подставить данные значения в уравнения нашей системы, то можно увидеть, что первое и третье решение являются приближенными, а второе и четвертое – точными. Графический метод часто используется, чтобы оценить количество корней и примерные их границы. Решения получаются чаще приближенными, чем точными.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота