Дано: y = (x²-3)/(x+1)
ИССЛЕДОВАНИЕ
1. Область определения.
x-1 ≠ 0, Х≠ 1 - разрыв функции при Х=1. Разрыв II-го рода (неустранимый)
Х∈(-∞;1)∪(1;+∞)
2. Вертикальная асимптота: Х= 1.
3. Пересечение с осью Х.
x²-3 = 0. Нули функции: x1 = - √3, х2 = √3
4. Пересечение с осью У.
Y(0) = 3.
5 Наклонная асимптота.
Уравнение асимптоты: y = k*x+b
k = lim(+∞)Y(x)/x = (x²-3)/(x²-1) = 1
b = lim(+∞) Y(x) - k*x = lim(+∞)(x-3)/(x-1) = 1
Y = x +1. - наклонная асимптота.
6. Проверка на чётность.
Y(-x) ≠ Y(x). Y(-x) ≠ - Y(x) Функция ни четная ни нечетная - общего вида..
7. Поведение в точке разрыва.
lim(->1-) Y(x) = -∞.lim(->1+) Y(x) = +∞.
8, Первая производная.
Y'(x)= 2x/(x-1)- (x²-3)/(x-1)² = (x² - 2*x + 3)/(x-1)² = 0
x² - 2x+3 = 0
Корней нет
9. Локальных экстремумов - нет.
10. Участки монотонности функции.
Возрастает во всей области определения- Х∈(-∞;1)∪(1;+∞).
11. Вторая производная.
Y"(x)= 2*(x-1}/(x-1)²- 2*(x²-2x+3)/(x-1)³ = -4/(x-1)³=0
Корней нет. Точек перегиба (на графике) - нет.
Перегиб в точке разрыва - х=1
12. Вогнутая - "ложка" - Х∈(-∞;1), выпуклая - "горка" - Х∈(1;+∞).
13. График в приложении
ответ: 125/6 = 20 5/6 кв. ед.
Пошаговое объяснение:
Найдите площадь фигуры ограниченной линиями
y=5x+x^2+2, y=2.
Строим графики функций (См. скриншот).
Площадь S=S(AmB) - S(AnB).
По формуле Ньютона-Лейбница
S=∫ₐᵇf(x)dx=F(x)|ₐᵇ = F(b)-F(a).
Пределы интегрирования (См. скриншот) a= -5; b=0. Тогда
S=∫₋₅⁰2dx - ∫₋₅⁰(5x+x^2+2)dx = 125/6 = 20 5/6 кв. ед.
1) ∫₋₅⁰2dx=2∫₋₅⁰dx = 2x|₋₅⁰ = 2(0-(-5))=10;
2) ∫₋₅⁰(5x+x^2+2)dx = 5∫₋₅⁰xdx + ∫₋₅⁰x²dx + 2∫₋₅⁰dx =
= 5(x²/2)|₋₅⁰+x³/3|₋₅⁰ + 2(x)|₋₅⁰ = 5/2(0²-(-5)²) + 1/3(0³-(-5)³) + 2(0-(-5)) =
=5/2*(-25) + 1/3*125 +2*5 = -65/6
3) 5-(-65/6) = 10+65/6 = 125/6 = 20 5/6 кв. ед.
Дано: y = (x²-3)/(x+1)
ИССЛЕДОВАНИЕ
1. Область определения.
x-1 ≠ 0, Х≠ 1 - разрыв функции при Х=1. Разрыв II-го рода (неустранимый)
Х∈(-∞;1)∪(1;+∞)
2. Вертикальная асимптота: Х= 1.
3. Пересечение с осью Х.
x²-3 = 0. Нули функции: x1 = - √3, х2 = √3
4. Пересечение с осью У.
Y(0) = 3.
5 Наклонная асимптота.
Уравнение асимптоты: y = k*x+b
k = lim(+∞)Y(x)/x = (x²-3)/(x²-1) = 1
b = lim(+∞) Y(x) - k*x = lim(+∞)(x-3)/(x-1) = 1
Y = x +1. - наклонная асимптота.
6. Проверка на чётность.
Y(-x) ≠ Y(x). Y(-x) ≠ - Y(x) Функция ни четная ни нечетная - общего вида..
7. Поведение в точке разрыва.
lim(->1-) Y(x) = -∞.lim(->1+) Y(x) = +∞.
8, Первая производная.
Y'(x)= 2x/(x-1)- (x²-3)/(x-1)² = (x² - 2*x + 3)/(x-1)² = 0
x² - 2x+3 = 0
Корней нет
9. Локальных экстремумов - нет.
10. Участки монотонности функции.
Возрастает во всей области определения- Х∈(-∞;1)∪(1;+∞).
11. Вторая производная.
Y"(x)= 2*(x-1}/(x-1)²- 2*(x²-2x+3)/(x-1)³ = -4/(x-1)³=0
Корней нет. Точек перегиба (на графике) - нет.
Перегиб в точке разрыва - х=1
12. Вогнутая - "ложка" - Х∈(-∞;1), выпуклая - "горка" - Х∈(1;+∞).
13. График в приложении
ответ: 125/6 = 20 5/6 кв. ед.
Пошаговое объяснение:
Найдите площадь фигуры ограниченной линиями
y=5x+x^2+2, y=2.
Строим графики функций (См. скриншот).
Площадь S=S(AmB) - S(AnB).
По формуле Ньютона-Лейбница
S=∫ₐᵇf(x)dx=F(x)|ₐᵇ = F(b)-F(a).
Пределы интегрирования (См. скриншот) a= -5; b=0. Тогда
S=∫₋₅⁰2dx - ∫₋₅⁰(5x+x^2+2)dx = 125/6 = 20 5/6 кв. ед.
1) ∫₋₅⁰2dx=2∫₋₅⁰dx = 2x|₋₅⁰ = 2(0-(-5))=10;
2) ∫₋₅⁰(5x+x^2+2)dx = 5∫₋₅⁰xdx + ∫₋₅⁰x²dx + 2∫₋₅⁰dx =
= 5(x²/2)|₋₅⁰+x³/3|₋₅⁰ + 2(x)|₋₅⁰ = 5/2(0²-(-5)²) + 1/3(0³-(-5)³) + 2(0-(-5)) =
=5/2*(-25) + 1/3*125 +2*5 = -65/6
3) 5-(-65/6) = 10+65/6 = 125/6 = 20 5/6 кв. ед.