В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
mirator91
mirator91
22.08.2022 09:48 •  Математика

Задано линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Найти частное решение,
которое удовлетворяет приведенным начальным условиям.


Задано линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Показать ответ
Ответ:
aleksBRO
aleksBRO
27.06.2021 09:46

y'' - 2y '- 8y = 16 {x}^{2} + 2

1.

y'' - 2y' - 8y = 0 \\ \\ y = {e}^{kx} \\ \\ k {}^{2} - 2k - 8 = 0\\ D= 4 + 32 = 36 \\ k_1 = \frac{2 + 6}{2} = 4 \\ k_2 = - 2 \\ \\ y = C_1 {e}^{4x} + C_2 {e}^{ - 2x}

2.

y = ax {}^{2} + bx + c

y' = 2ax + b

y'' = 2a

В НЛДУ:

2a - 4ax - 2b - 8 {ax}^{2} - 8bx - 8c = 16 {x}^{2} + 2 \\ \\ - 8a = 16 \\ - 4a - 8b = 0 \\ 2a - 2b - 8c = 2 \\ \\ a = - 2 \\ b = 1 \\ c = - 1\\ \\ y = - 2 {x}^{2} + x - 1

общее решение:

y = C_1 {e}^{4x} + C_2 {e}^{ - 2x} - 2 {x}^{2} + x - 1 \\

y(0) = 0,y'(0) = 5

y = 4C_1 {e}^{4x} - 2 C_2 {e}^{ - 2x} - 4x + 1

0 = C_1 + C_2 - 1 \\ 5 = 4C_1 - 2C_2 + 1 \\ \\ C_1 = 1 - C_2 \\ 4 - 4C2 - 2C_2 = 4 \\ \\ - 6C_2 = 0 \\ C_2 = 0 \\ \\ C_1 = 1

y = {e}^{4x} - 2 {x}^{2} + x - 1

- частное решение

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота