В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
samigyllin
samigyllin
05.07.2021 15:54 •  Математика

Задайте путем перечисления элементов множество А двузначных чисел, больших 20 и меньше 30, и множество В двузначных чисел, кратных 13. Найдите пересечение множеств А и В.

Показать ответ
Ответ:
2001maks44
2001maks44
14.06.2021 21:38
Формула площади прямоугольника:
S= a×b , где   а -длина, b  - ширина
По условию :  S= 24 см²  ;   а= (b + 5) см
Уравнение:
(b+5)×b = 24
b² +5b  -24 =0
D= 5² - 4*1*(-24) = 25 +96=121=11²
D>0  два корня уравнения
b₁= (-5 - 11)/ (2*1) = -16/2 = - 8   не удовл. условию задачи
b₂ = (-5 +11) / 2 = 6/2= 3  (см) ширина
а= 3 + 5 =  8 (см) длина

Можно решить методом подбора :
S= 24 см²
Нужно разложить  число 24 на множители и посмотреть, на сколько они удовлетворяют условию задачи:
24 =  24 × 1   (24 -1= 23  - не удовл. условию)
24 =  12 × 2   (12 - 2 = 10  - не удовл. условию)
24 =  8 ×3      ( 8 -3  = 5   - удовл. условию)

ответ : 3 см и  8 см  стороны прямоугольника.

Вторая задача в приложении.
ответ: 6 дм  сторона квадрата.
0,0(0 оценок)
Ответ:
sevostyanova3064
sevostyanova3064
17.03.2023 04:53
Предположим, что на карточках есть хотя бы 4 различных числа a<b<c<d. Тогда суммы a+b+c, a+b+d, a+c+d попарно различны, что невозможно. Рассмотрим случай, когда на карточках есть ровно 3 различных числа a<b<c. При этом хотя бы одно число (например, a) встречается не менее 2 раз. Тогда суммы 2a+b<2a+c<a+b+c, что невозможно. Все 6 чисел между собой равны быть не могут, поэтому остается случай, когда есть только 2 различных числа a<b.

Если есть хотя бы две карточки с числом a и 2 карточки с числом b, то суммы 2a+b, a+2b попарно различны и 2a+b<a+2b. Тогда 2a+b=16, a+2b=18, сложив эти равенства, имеем 3a+3b=34, что невозможно, поскольку 34 не делится на 3. Остаются случаи, когда либо есть число a и 5 чисел b, либо число b и 5 чисел a. В первом случае 10 сумм равны a+2b=16 и 10 сумм равны 3b=18, откуда b=6, a=4. Во втором случае 2a+b=16, 3a=18, откуда a=6, b=4, что противоречит условию a<b. Таким образом, наименьшее из чисел равно 4.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота