Расстояние 180 км; 1 день путь 40% всего 1 день скорость 45 км/час; потом скорость --- ?км/час, но на 20% <↑ общее время ? час. Решение. 180 * 40 : 100 = 72(км) расстояние за первый день; 72 : 45 = 1,6 (час) время, затраченное в первый день; 100% - 20% = 80% скорость на остатке пути по отношению к первоначальной; 45 * 80 : 100 = 36 (км/час) скорость на оставшемся пути; 180 - 72 = 108 (км) оставшийся путь; 108 : 36 = 3 (часа) время, затраченное на оставшийся путь; 1,6 + 3 = 4, 6 (часа) --- время, затраченное на весь путь; ответ : На весь путь затрачено 4,6 часа (или 4 часа 36 мин)
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
1 день путь 40% всего
1 день скорость 45 км/час;
потом скорость --- ?км/час, но на 20% <↑
общее время ? час.
Решение.
180 * 40 : 100 = 72(км) расстояние за первый день;
72 : 45 = 1,6 (час) время, затраченное в первый день;
100% - 20% = 80% скорость на остатке пути по отношению к первоначальной;
45 * 80 : 100 = 36 (км/час) скорость на оставшемся пути;
180 - 72 = 108 (км) оставшийся путь;
108 : 36 = 3 (часа) время, затраченное на оставшийся путь;
1,6 + 3 = 4, 6 (часа) --- время, затраченное на весь путь;
ответ : На весь путь затрачено 4,6 часа (или 4 часа 36 мин)