За круглым столом сидят 13 богатырей из k городов, где 1 < k < 13. Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.
Решение Пусть утверждение неверно, то есть в любой момент времени ровно один рыцарь из каждого города держит золотой кубок (так как число кланов равно числу кубков). Допустим, что каждая следующая передача кубков происходит через минуту. Тогда за 13 минут – время полного оборота кубков вокруг стола – каждому рыцарю доведётся держать каждый из золотых кубков ровно по одному разу. То есть каждый рыцарь будет держать золотой кубок в течение k минут, а всем рыцарям из одного города – nk минут, где n – число рыцарей из этого города. Таким образом, nk = 13. Но это невозможно, поскольку число 13 простое. Противоречие.
Борын-борын заманда булган икән, ди, бер кеше. Бу кеше нең исеме Нарый булган, ди.
Көннәрдән беркөнне Нарый чыгып киткән, ди, юлга. Бара да бара, ди, бу. Бара торгач барып кергән, ди, бу ялтырап торган боз өстенә. Боз өстенә барып керүе булган, аягы таеп, әйләнеп төшүе булган.
За круглым столом сидят 13 богатырей из k городов, где 1 < k < 13. Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.
Решение
Пусть утверждение неверно, то есть в любой момент времени ровно один рыцарь из каждого города держит золотой кубок (так как число кланов равно числу кубков). Допустим, что каждая следующая передача кубков происходит через минуту. Тогда за 13 минут – время полного оборота кубков вокруг стола – каждому рыцарю доведётся держать каждый из золотых кубков ровно по одному разу. То есть каждый рыцарь будет держать золотой кубок в течение k минут, а всем рыцарям из одного города – nk минут, где n – число рыцарей из этого города. Таким образом, nk = 13. Но это невозможно, поскольку число 13 простое. Противоречие.
Борын-борын заманда булган икән, ди, бер кеше. Бу кеше нең исеме Нарый булган, ди.
Көннәрдән беркөнне Нарый чыгып киткән, ди, юлга. Бара да бара, ди, бу. Бара торгач барып кергән, ди, бу ялтырап торган боз өстенә. Боз өстенә барып керүе булган, аягы таеп, әйләнеп төшүе булган.
— Боз, син нидән болай көчле?
— Көчле булсам,— ди Боз,— мине Кояш эретә алмас иде, — ди.
— Кояш, син нидән көчле? — ди Нарый.
— Көчле булсам, мине Болыт капламас иде.
— Болыт, син нидән көчле?
— Көчле булсам, мине Яңгыр тишеп чыкмас иде.
— Яңгыр, син нидән көчле?
— Көчле булсам,— ди Яңгыр,— мине Җир сеңдермәс иде.
— Җир, син нидән көчле?
— Көчле булсам, мине Үлән тишеп чыкмас иде.
— Үлән, син нидән көчле?
— Көчле булсам, мине Сыер ашамас иде.
— Сыер, син нидән көчле?
— Көчле булсам, мине Пычак кисмәс иде. Хәзер Пычактан сорый инде Нарый:
— Пычак, син нидән көчле?
— Көчле булсам, мине Ут эретмәс иде.
— Ут, син нидән көчле?
— Көчле булсам, мине Су сүндермәс иде.
— Су, син нидән көчле?
— Көчле булсам, мине кеше җиңмәс иде, ә ул мине җиңә, тегермәннәр әйләндерергә җигә! — ди Су.
Шуннан соң Нарый, кешедән дә көчле нәрсә юк икән дип, үз юлына китә, шуның белән әкият тә бетә.