ответ:Сумма логарифмов с одинаковыми основаниями равна логарифму произведения выражений, стоящих под знаком логарифма. logc a + logc b = logc (a + b), a > 0, b > 0. log2 ((x - 2)(x - 3)) = 1; О. Д. З. {х - 2 > 0, х - 3 > 0; х > 3. Применим определение логарифма: Логарифмом числа а по основанию с logc a = b, называется такое число b, что выполняется равенство а = с^b. (х - 2)(х - 3) = 2^1; х^2 - 3х - 2х + 6 = 2; х^2 - 5х + 6 - 2 = 0; х^2 - 5х + 4 = 0; D = b^2 - 4ac; D = (-5)^2 - 4 * 1 * 4 = 25 - 16 = 9; √D = 3; x = (-b ± √D)/(2a); x1 = (5 + 3)/2 = 4; x2 = (5 - 3)/2 = 1 - посторонний корень, т.к. не принадлежит О. Д. З. Объяснение: ОТВЕТ. 4. ЕСЛИ ЧТО ТО НЕ ТАК НЕ БЛАКИРУЙТЕ АККАУНТ
Скорость I туриста - х км/ч Скорость II туриста - у км/ч
Первая часть задачи: Расстояние , пройденное I туристом - 2х км Расстояние , пройденное II туристом - 2у км Расстояние , пройденное двум туристами - (24-6)= 18 км Первое уравнение : 2х + 2у = 18
Вторая часть задачи: Расстояние, пройденное I туристом - (2+2) х = 4х км Расстояние, пройденное II туристом - (2+2)у = 4у км Разница в расстоянии - 4 км Второе уравнение: 4х - 4у = 4
Скорость II туриста - у км/ч
Первая часть задачи:
Расстояние , пройденное I туристом - 2х км
Расстояние , пройденное II туристом - 2у км
Расстояние , пройденное двум туристами - (24-6)= 18 км
Первое уравнение :
2х + 2у = 18
Вторая часть задачи:
Расстояние, пройденное I туристом - (2+2) х = 4х км
Расстояние, пройденное II туристом - (2+2)у = 4у км
Разница в расстоянии - 4 км
Второе уравнение:
4х - 4у = 4
Система уравнений:
{2x+2y=18 | :2
{4x - 4y= 4 | :4
{x+y = 9 ⇒ у=9-х
{x-y=1
метод сложения
х+у +х-у=9+1
2х=10
х=10/2
х=5 (км/ч) скорость I пешехода
у=9-5= 4 (км/ч) скорость II пешехода
ответ: 5 км/ч скорость первого пешехода, 4 км/ч скорость второго пешехода.