:№1 а) (5а-8)^2-8ав+5 б)(7а-6)(7а+6) –(6а^2-7) в) (2в-3а)(3а+2в) +(89-4в^2) г) (4а+5)^2-(2а-3)(8а+21) д) (2+х)(4-2х+х2) -56-х^3 е) (3-у)(9+3у+у^2) +у^3 №2 а)(х^2+7)^2 + 45х^2-49 б) (х^4-6)(х^4+6) –(х^8-36) в) (х^3-у)^2-(х^6+у^2) №3 а) (3х^2+4у^3)(4у^3-3х^2)+16у^6-9х^4 б) (5а^2-12)^2-25а^4+24 в)(4х^3+2у^2)^2- (4х^3-2у^2)(4х^3+2у^2) г) (3у^4-3х^4)^2+(2х^4-у^4)(у^4+5х^4)
х=-3 у=0
Объяснение:
Чтобы решить эту систему сложением, нужно сначала убедится, что один (и только один) из корней равен такому же корню, т.е. в одном уравнении 4х, в другом - 4х и т.д. Итак, здесь одинаковых корней нет, поэтому нам их нужном домножить на нужные числа (или число):
-4х-3у=12 *3
5у-3х=9 *4
-12х-9у=36
20у-12х=36
Теперь у нас есть одинаковые корни. Суть сложения в том, чтобы от одинаковых корней избавиться, чтобы остался только другой корень и известное нам число. Теперь вычитаем одно из другого (это тоже является сложения, не удивляйся):
получается:
-29у=0
у=0
Теперь подставим вместо у ноль в любое уравнение и спокойно решаем его:
-4х-0=12
-4х=12
х=-3
1)Координаты точек пересечения графиков функций (2; 5); (4;13)
2)Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
Координаты пересечения параболой оси Оу (0; 12)
Объяснение:
1. Не строя графиков функций, найдите координаты точек пересечения графиков функций y=2x²-8x+13 и y=4x-3.
Левые части уравнений равны, приравняем правые и вычислим х:
2x²-8x+13=4x-3
2x²-8x+13-4x+3=0
2x²-12x+16=0, квадратное уравнение, ищем корни:
х₁,₂=(12±√144-128)/4
х₁,₂=(12±√16)/4
х₁,₂=(12±4)/4
х₁=8/4
х₁=2
х₂=16/4
х₂=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
y=4x-3
у₁=4*х₁-3
у₁=4*2-3
у₁=5
у₂=4*х₂-3
у₂=4*4-3
у₂=13
Координаты точек пересечения графиков функций (2; 5); (4;13)
2. Найдите координаты точек пересечения параболы
y= -3x²+12 с осями координат.
а)Чтобы найти точки пересечения параболы с осью Ох, нужно решить квадратное уравнение:
-3x²+12=0
3x²-12=0
х₁,₂=±√144/6
х₁,₂=±12/6
х₁= -2
х₂=2
Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
б)Любой график пересекает ось Оу при х=0.
х=0
y= -3x²+12
у=0+12
у=12
Координаты пересечения параболой оси Оу (0; 12)