№1. Дана функция: у= х² + 5х – 6 а) запишите координаты вершины параболы;
б) запишите ось симметрии параболы;
в) найдите точки пересечения графика с осями координат,
с) постройте график функции;
д) найти область определения е)функции;
найти наименьшее или наибольшее значение функции.
нужно
1. ОДЗ: х ∈ R
2. Функция не является четной или нечетной, то есть общего вида.
3. х = 0 ⇒ у = 6
ось 0х не пересекает
4. Асимптот нет
5. Функция убывает на промежутке (-∞; -5/4]
Функция возрастает на промежутке [-5/4; +∞)
6. Функция вогнута.
Объяснение:
Требуется исследовать функцию и построить график.
y = 2x² + 5x + 6
1. ОДЗ: х ∈ R
2. Четность, нечетность.
Если f(-x) = f(x), функция четная.
Если f(-x) = -f(x), функция нечетная.
у(-х) = 2 · (-х)² + 5 · (-х) + 6 = 2х² - 5х + 6
у(-х) ≠ у(х) ≠ -у(х) ⇒ функция не является четной или нечетной, то есть общего вида.
3. Пересечение с осями:
1) х = 0 ⇒ у = 6.
Ось 0у график пересекает в точке (0; 6)
2) у = 0 ⇒ 2х² + 5х + 6 = 0
D = 25 - 4 ·2 · 6 = - 23 <0
⇒ корней нет, ось 0х не пересекает.
4. Асимптоты.
Функция непрерывна, асимптот нет.
5. Возрастание, убывание, экстремумы.
Найдем производную:
y' = 2 · 2x + 5 = 4x + 5
Приравняем к нулю и найдем корни:
4х + 5 = 0
Отметим точку на числовой оси и определим знак производной на промежутках:
⇒ Функция убывает на промежутке (-∞; -5/4]
Функция возрастает на промежутке [-5/4; +∞)
Если производная меняет знак с минуса на плюс, то в данной точке будет минимум.
⇒ координаты точки минимума (-5/4; 2 7/8)
6. Выпуклость, вогнутость, точки перегиба.
Найдем производную второго порядка:
y'' > 0
Если вторая производная больше нуля, то функция вогнута.
Точек перегиба нет.
Строим график.
Пусть х - скорость второго туриста, тогда скорость первого туриста = х + 1
время пути первого туриста = S/v = 20/(x+1)
время пути второго туриста = S/v = 20/x
известно, что первый приходит на час раньше второго, тогда:
время второго + час = время первого
20/(x + 1) + 1 = 20/x (одз: х не равно 0; х не равно - 1)
20/(х + 1) + (х + 1)/(х + 1) = 20/х
(х + 21)/(х + 1) = 20/х
20(х + 1) = х(х + 21)
20х + 20 = х² + 21х
х² + х - 20 = 0
D = 1² + 4×20 = 81 = 9²
х1 = (-1 + 9)/2 = 4 км/ч - скорость второго
х2 = (-1 - 9)/2 = -5 - не подходит по смыслу задачи
х1 + 1 = 5 км/ч - скорость первого
ответ: 4 км/ч; 5 км/ч