В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
ИваПоля
ИваПоля
10.03.2023 18:23 •  Алгебра

1.Для каждого неравенства укажите множество его решений.
А) х 2 + 4 > 0. Б) x 2 – 4 > 0. В) x 2 – 4 < 0. Г) х 2 + 4 < 0

1) ( - ∞; -2)( 2; + ∞). 2) ( - ∞ ; + ∞ ). 3) ( -2; 2 ). 4) ( 2; + ∞ ) 5) 6) ( - ∞; -2)

ответ а-? б-? в-? г-?

Показать ответ
Ответ:
juliajulia005
juliajulia005
17.11.2022 05:01
Я чертёж заброшу. А пока само решение:
→     →      →     →       →
АВ + СВ = АВ + ВМ = АМ
                 →    → 
Задание : АМ*АС=?
Знаем, что скалярное произведение векторов - это произведение их длин на косинус угла между ними.
→      →      →    →                      →      →
АМ * АС = |АМ|*|AC|*CosABM= |AM|*|AC|*Cos150°= ?
|AM| ищем из ΔАМС по т. Пифагора |AM| = √(12 -1)=√13
|AC| = 1 ( против угла 30°)
Сos150° = -Cos30°= -√3/2
→      →      →    →                      →      →
АМ * АС = |АМ|*|AC|*CosABM= |AM|*|AC|*Cos150°=√13*1*(-√3/2) = -√39/2

Втреугольном треугольнике abc углы при вершинах а и с равны 60 и 90, а длина гипотенузы равна 2, выч
0,0(0 оценок)
Ответ:
MeerDasha487
MeerDasha487
31.03.2022 04:39
Найдём касательную к параболе в точке (0,5;0,75). Уравнение касательной имеет вид:
y=f'(x₀)(x-x₀)+f(x₀)
x₀=0,5
f(x₀)=0,75
f'(x)=(2x-x²)'=2-2x
f'(x₀)=2-2*0,5=2-1=1
Подставляем все найденные значения в уравнение касательной:
y=1*(x-0,5)+0,75=x-0,5+0,75=x+0,25
Площадь фигуры, ограниченной графиками функций находится по формуле:
S=∫(f(x)-g(x))dx
Верхний предел интегрирования будет равен 0,5 или 1/2 (точка касания прямой и параболы), а нижний предел интегрирования равен
x+0,25=0
x=-0,25=-1/4 (точка пересечения касательной с прямой y=0 или осью абсцисс)
Предлагаю начертить графики на координатной плоскости. Где сразу видны пределы интегрирования и график функции y=x+0,25 расположен выше графика функции y=2x-x². Записываем интеграл и решаем его:
S= \int\limits^{ \frac{1}{2} }_{- \frac{1}{4} } {((x+0,25)-(2x-x^2))} \, dx =\int\limits^{ \frac{1}{2} }_{- \frac{1}{4} } {(x+0,25-2x+x^2)} \, dx=
=\int\limits^{ \frac{1}{2} }_{- \frac{1}{4} } {(x^2-x+ \frac{1}{4} )} \, dx= \frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{4} |_{- \frac{1}{4} }^{ \frac{1}{2} }= \frac{1}{24}- \frac{1}{8} + \frac{1}{8}+ \frac{1}{192} + \frac{1}{32}+ \frac{1}{16}
= \frac{8+1+6+12}{192} = \frac{27}{192}= \frac{9}{64} ед²

Вычислите площадь плоской фигуры,ограниченной прямой y=0,параболой y=2x-x^2 и касательной,проведенно
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота