1)(х-6)/2 >0 2)(5х-1)/4 <1 3)х2+х>0 (здесь х в квадрате) 4)х(х-8)> (2х-1)2 (здесь последняя 2 -это квадрат скобки) 5) Х2>2,3х (здесь х в квадрате). Решить 3, 4, 5 методом параболы и по алгоритму с решением. желательно в тетради
Когда персонажи ели варенье втроем, то Малышу досталась 1/9 часть. Значит, Карлсон и Винни-Пух съели 1-1/9=8/9 варенья - в 8 раз больше, чем Малыш. Если бы ели только Малыш и Карлсон, то Малыш съел бы 1/4, а Карлсон 1-1/4=3/4. Следовательно, Карлсон съедает варенья столько, сколько съели бы 3 Малыша. Значит, когда ели все трое, Карлсон съел 3*1/9=3/9. Тогда Винни-Пух съел 8/9-3/9=5/9 всего варенья. Это означает, что Винни-Пух съедает как 5 Малышей. Следовательно, если есть будут только Малыш и Винни-Пух, то Малыш съест 1 часть, а Пух 5 частей. Значит Малышу достанется 1/6 от варенья.
Находим первую производную функции:
y' = (x-4)² * (2*x-2)+(x-1)² * (2*x-8)
или
y' = 2(x-4)(x-1)(2*x-5)
Приравниваем ее к нулю:
2(x-4)(x-1)(2*x-5) = 0
x₁ = 1
x₂ = 5/2
x₃ = 4
Вычисляем значения функции
f(1) = 0
f(5/2) = 81/16
f(4) = 0
ответ: fmin = 0; fmax = 81/16
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2(x-4)²+2(x-1)²+2(2*x-8)(2*x-2)
или
y'' = 12*x ²- 60*x + 66
Вычисляем:
y''(1) = 18>0 - значит точка x = 1 точка минимума функции.
y''(4) = 18>0 - значит точка x = 4 точка минимума функции.
Если бы ели только Малыш и Карлсон, то Малыш съел бы 1/4, а Карлсон 1-1/4=3/4. Следовательно, Карлсон съедает варенья столько, сколько съели бы 3 Малыша.
Значит, когда ели все трое, Карлсон съел 3*1/9=3/9. Тогда Винни-Пух съел 8/9-3/9=5/9 всего варенья. Это означает, что Винни-Пух съедает как 5 Малышей.
Следовательно, если есть будут только Малыш и Винни-Пух, то Малыш съест 1 часть, а Пух 5 частей. Значит Малышу достанется 1/6 от варенья.