1. Какие из пар чисел (2; – 3); (–3; 2); (3; 4); (– 7; 5) являются решениями уравнения
3х – 5у = –11?
2. Принадлежит ли графику уравнения 4х –7у = 3 точка:
1) А(5; 0); 2) В(10; –3); 3) С(6; –3).
3. Известно, что пара чисел (– 3; у) является решением уравнения 5х – 3у = 12. Найдите значение у.
y = kx + b или например y = 2x + 6, y = x -1 и т.д.
б) функции являющейся непрерывной в каждой точке кроме x=0 - здесь на ум приходит только одна одна функция
у этой функция x€R, кроме x=0 - т.к. на 0 делить нельзя
Другие модификации
в) функции являющейся непрерывной в каждой точке кроме кроме x=0 и x=1 - тут сложнее, но если добавит произведение к вышеописанной функции , то можно получить следующую функцию
у этой функция x€R, кроме x=0 x=0 и x=1 - т.к. на 0 делить нельзя
Объяснение:
Войти
РЕКЛАМА
Салют, Сбер! Переведи деньги
Делайте переводы голосом в моб приложении СберБанк Онлайн
Перейти
АнонимМатематика13 апреля 02:40
Теплоход проходит по течению реки до пункта назначения 76км и после стоянки возвращается в пункт отправления. Найдите
скорость теплохода в неподвижной воде, если скорость течения равна3 км/ч, стоянка длится 1 час, а в пункт отправления теплоход возвращается через 20 часов после отплытия из него.
РЕКЛАМА
Салют, Сбер! Переведи деньги
Делайте переводы голосом в моб приложении СберБанк Онлайн
Перейти
ответ или решение1
Яковлев Федор
Пусть собственная скорость теплохода х км/ч. Скорость теплохода по течению реки равна (х + 3) км/ч. Скорость теплохода против течения реки (х – 3) км/ч. На путь по течению реки теплоходу понадобилось 76/(х + 3) часа, а на путь против течения реки – 76/(х – 3) часа. На весь путь туда и обратно теплоход потратил (76/(х + 3) + 76/(х – 3)) часа или (20 – 1) = 19 часов. Составим уравнение и решим его.
76/(х + 3) + 76/(х – 3) = 19 – приведем к общему знаменателю (х + 3)(х – 3) = x^2 – 9; первую дробь домножим на (х – 3), вторую – на (х + 3) и число 19 – на (x^2 – 9); далее решаем без знаменателя, т.к. две дроби с одинаковым знаменателем равны, если равны их числители;
76(x – 3) + 76(x + 3) = 19(x^2 – 9);
76x – 228 + 76x + 228 = 19x^2 – 171;
-19x^2 + 76x + 76x + 171 = 0;
19x^2 – 152x – 171 = 0;
D = b^2 – 4ac;
D = (- 152)^2 – 4 * 19 * (- 171) = 23104 + 12996 = 36100; √D = 190;
x = (- b ± √D)/(2a);
x1 = (152 + 190)/(2 * 19) = 342/38 = 9 (км/ч);
x2 = (152 – 190)/(2 * 19) < 0 – скорость не может быть отрицательным числом.
ответ. 9 км/ч.